Skip to content

Latest commit

 

History

History
58 lines (48 loc) · 1.44 KB

README.md

File metadata and controls

58 lines (48 loc) · 1.44 KB

Twitter Data Mining

Overview

This project focuses on mining and analyzing data from Twitter. It involves collecting tweets, processing the data, and performing various analyses to extract meaningful insights.

Features

  • Fetch tweets using the Twitter API
  • Perform sentiment analysis on tweets
  • Visualize tweet data with graphs and charts
  • Store and retrieve tweet data from a database

Requirements

  • Python 3.x
  • Tweepy
  • Pandas
  • NLTK (Natural Language Toolkit)
  • Matplotlib
  • SQLite (or any other preferred database)

Setup

  1. Clone the repository:

    git clone https://github.com/yourusername/twitter-data-mining.git
    cd twitter-data-mining
  2. Install the required packages:

    pip install -r requirements.txt
  3. Set up your Twitter API credentials:

    • Create a Twitter Developer account and generate API keys and tokens.
    • Create a file named config.py and add your credentials:
      CONSUMER_KEY = 'your-consumer-key'
      CONSUMER_SECRET = 'your-consumer-secret'
      ACCESS_TOKEN = 'your-access-token'
      ACCESS_TOKEN_SECRET = 'your-access-token-secret'

Usage

  1. Fetch tweets:

    python fetch_tweets.py --query "your search query" --count 100
  2. Perform sentiment analysis:

    python sentiment_analysis.py
  3. Visualize data:

    python visualize_data.py

Project Structure