-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
executable file
·116 lines (99 loc) · 4.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
try:
import colored_traceback.always
except:
pass
try:
import nni
except:
pass
import os
import json
import argparse
import torch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.mem_transformer as module_arch
from tqdm import tqdm
from utils import Logger
import pickle
import numpy as np
def get_instance(module, name, config, *args):
return getattr(module, config[name]['type'])(*args, **config[name]['args'])
def import_module(name, config):
return getattr(__import__("{}.{}".format(name, config[name]['module_name'])), config[name]['type'])
def mod_config(config, nni_params):
if (nni_params == None):
return config
def recurse_dict(d, k, v):
if (k in d):
d[k] = v
return d
for kk, vv in d.items():
if (type(vv) == dict):
d[kk] = recurse_dict(vv, k, v)
return d
for k, v in nni_params.items():
if k in config:
config[k] = v
continue
for kk, vv in config.items():
if (type(vv) == dict):
config[kk] = recurse_dict(vv, k, v)
return config
def main(config, resume, nni_params={}):
config = mod_config(config, nni_params)
train_logger = Logger()
# setup data_loader instances
data_loader = get_instance(module_data, 'data_loader', config)
valid_data_loader = data_loader.split_validation()
# build model architecture
model = import_module('model', config)(**config['model']['args'])
#model = get_instance(module_arch, 'arch', config)
print(model)
# get function handles of loss and metrics
loss = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = get_instance(torch.optim, 'optimizer', config, trainable_params)
lr_scheduler = get_instance(torch.optim.lr_scheduler, 'lr_scheduler', config, optimizer)
Trainer = import_module('trainer', config)
trainer = Trainer(model, loss, metrics, optimizer,
resume=resume,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
train_logger=train_logger)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Structmed Trainer')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args = parser.parse_args()
if args.config:
# load config file
config = json.load(open(args.config))
path = os.path.join(config['trainer']['save_dir'], config['name'])
elif args.resume:
# load config file from checkpoint, in case new config file is not given.
# Use '--config' and '--resume' arguments together to load trained model and train more with changed config.
config = torch.load(args.resume)['config']
else:
raise AssertionError("Configuration file need to be specified. Add '-c config.json', for example.")
#if args.device:
# os.environ["CUDA_VISIBLE_DEVICES"] = args.device
#torch.set_default_tensor_type(torch.cuda.FloatTensor if args.device else torch.FloatTensor)
params = {}
try:
params = nni.get_next_parameter()
except:
pass
#params = {"text": False}
#params = {"text": True, "codes": False, "learning_rate": 0.0001, "demographics_size": 0, "batch_size": 16, "div_factor": 1, "step_size": 40, "class_weight_1": 4.616655939419362, "class_weight_0": 0.81750651640358}
main(config, args.resume, params)