-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCar.py
248 lines (217 loc) · 10.1 KB
/
Car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#from main import car_mass, car_power, max_turning_angle, max_turning_speed, base_length, base_width, sensors_nb, sensors_angle, L, W
import pygame
from drawing import FPS, BLACK, DRAW_SCALE, GREEN, GREY, RED
from Map import Map
#from math import pi, sin, cos
from numpy import *
from time import time
#car parameters:
car_mass = 500#kg
car_power = 12000#wt, max a = 5m/s
max_speed = 2 #m/s = 100km/h
max_turning_angle = pi/6 #30 degrees
max_turning_speed = pi/3 #in a second
#base_length = 1.5#m
#base_width = 1#m
sensors_nb = 20 #car eyes nb
sensors_angle = pi*5/4 #sensors don't look back
max_seeing = 8#m
L = 2.0#m
W = 1.0#m
start_pos = [5-1, 2.5]
NEURONS_NB = 100
LAMBD = 0.001
def sigmoid(a):
return 2/(1+exp(-a))-1 #[-1;1]
def relu(a):
a[a<0] = 0
return a
def sigmoid_gradient(a):
return 2/(1+exp(negative(a)))*(1-1/(1+exp(negative(a))))
def relu_gradient(a):
a[a > 0] = 1
a[a <= 0] = 0
return a
def evaluate(inpt, Theta_1, Theta_2):
#Theta_1 = self.get_theta1()
#Theta_2 = self.get_theta2()
# print ("input",shape(inpt))
z_1 = a_1 = append(ones((shape(inpt)[0],1)), inpt, axis=1)
# print ("a_1", shape(a_1))
# print ("T1", shape(Theta_1))
z_2 = dot(a_1,Theta_1)
# print ("z_2", shape(z_2))
a_2 = relu(z_2) #relu
# print ("a_2", shape(a_2))
a_2 = append(ones((shape(a_2)[0],1)), a_2, axis=1)
# print ("a_2", shape(a_2))
# print ("T_2", shape(Theta_2))
z_3 = dot(a_2, Theta_2)
# print ("z_3", shape(z_3))
out = sigmoid(z_3) #softmax
# print ("out", shape(out))
return out, z_1, z_2, z_3, a_1, a_2
def cost(inpt, Y, Theta_1, Theta_2):
h, z_1, z_2,z_3, a_1, a_2 = evaluate(inpt, Theta_1, Theta_2)
m = shape(h)[0]
sum_theta = 0
sum_theta += sum(sum(dot(Theta_1[1:,:].T,Theta_1[1:,:]))) #droppping bias
sum_theta += sum(sum(dot(Theta_2[1:,:].T,Theta_2[1:,:])))
# print (shape(h))
# print (Y)
# a = negative(Y) * log(h) - (ones(shape(Y)) - Y) * log(ones(shape(h)) - h);
# J = 1/m * sum(sum(a)) + LAMBDa/(2*m)*(sum(sum(Theta1(:,2:end) .^2))+sum(sum(Theta2(:,2:end) .^2)));
return sum(sum(power((h-Y),2)))/(2*m) + LAMBD/(2*m)*sum_theta
# return 1./m *sum(sum(a))
class Car(object):
def __init__(self, gen = (random.rand((sensors_nb + 3 + 1)*NEURONS_NB + (NEURONS_NB + 1) * 2) - 0.5), start_position = start_pos):# - 0.48)):
self.mass = car_mass
self.power = car_power
self.max_angle = max_turning_angle
self.turning_speed = max_turning_speed
self.in_accident = False
self.gen = gen
self.sensors_angles = []
self.is_leader = False
for i in range(sensors_nb):
self.sensors_angles.append(-sensors_angle/2 + i * sensors_angle/(sensors_nb-1))
self.reset(start_position)
def draw(self, DISPLAYSURF, intersects):
X = self.position[0] - L * cos(self.angle) - W/2 * sin(self.angle) #X and Y top left point of car
Y = self.position[1] + L * sin(self.angle) - W/2 * cos(self.angle)
draw_color = BLACK if self.is_leader else GREY
for line in self.profile():
pygame.draw.line(DISPLAYSURF, draw_color, line[0]*DRAW_SCALE, line[1]*DRAW_SCALE, 2)
pygame.draw.line(DISPLAYSURF, draw_color, [(X + L/2 * cos(self.angle) + W/2 * sin(self.angle))*DRAW_SCALE, (Y - L/2 * sin(self.angle) + W/2 * cos(self.angle))*DRAW_SCALE],
[(X + L * cos(self.angle) + W/2 * sin(self.angle))*DRAW_SCALE, (Y - L * sin(self.angle) + W/2 * cos(self.angle))*DRAW_SCALE], 3)
for sensor, distance in zip(self.sensors(),intersects):
pygame.draw.line(DISPLAYSURF, GREEN, sensor[0]*DRAW_SCALE, sensor[1]*DRAW_SCALE, 1)
# print (distance)
# print (sensor[0])
# print (sensor[1])
circle = array(sensor[0]+(sensor[1]-sensor[0])*distance)
if any(isnan(circle==nan)):
print ("AAAAAAAAAAA", circle)
circle[isnan(circle)] = max_seeing
pygame.draw.circle(DISPLAYSURF, RED, circle*DRAW_SCALE, 2)
def sensors(self):
a = array(sensors_nb * [[self.position, self.position]], float16)
a[:,1,0] += multiply(max_seeing, cos(self.angle + array(self.sensors_angles)))
a[:,1,1] += multiply(max_seeing, -sin(self.angle + array(self.sensors_angles)))
return a
def profile(self):
X = self.position[0] - L * cos(self.angle) - W/2 * sin(self.angle) #X and Y top left point of car
Y = self.position[1] + L * sin(self.angle) - W/2 * cos(self.angle)
return array([[[X, Y],
[X + L * cos(self.angle),Y - L * sin(self.angle)]],
[[X + L * cos(self.angle), Y - L * sin(self.angle)],
[X + L * cos(self.angle) + W * sin(self.angle), Y - L * sin(self.angle) + W * cos(self.angle)]],
[[X + L * cos(self.angle) + W * sin(self.angle), Y - L * sin(self.angle) + W * cos(self.angle)],
[X + W * sin(self.angle), Y + W * cos(self.angle)]],
[[X + W * sin(self.angle), Y + W * cos(self.angle)],
[X, Y]]])
def go(self,inpt):
# print (inpt)
#power (-1,1) - percentage of implemented power
#angle (-1,1) - percentage of turning angle speed
inpt = inpt[0]
forward = inpt[0]
# print (inpt[1])
left = inpt[1]
self.speed += forward*max_speed/FPS
self.wheels_angle = max_turning_angle * left
self.angle += arcsin((self.speed/FPS * sin(self.wheels_angle))/L)
self.position += self.speed/FPS * array([cos(self.angle), -sin(self.angle)])
# def go_old(self, inpt):
# gas_pedal = inpt[0]
# stearing_wheel = inpt[1]
# #power (-1,1) - percentage of implemented power
# #angle (-1,1) - percentage of turning angle speed
# if self.speed > 1 and self.speed < max_speed:
# self.speed += (gas_pedal*self.power)/(self.mass*self.speed)/FPS
# elif self.speed >= max_speed and gas_pedal < 0:
# self.speed += (gas_pedal*self.power)/(self.mass)/FPS
# elif self.speed <= 1:
# self.speed += (gas_pedal*self.power)/(self.mass)/FPS
# else:
# pass
#
# if abs(self.wheels_angle) < max_turning_angle:
# self.wheels_angle += (stearing_wheel*self.turning_speed/FPS)
#
# self.angle += arcsin((self.speed/FPS * sin(self.wheels_angle))/L)
#
# self.position += self.speed/FPS * array([cos(self.angle), -sin(self.angle)])
def get_inputs(self, intersects):
# input (sensors_nb + speed + wheels_angle + angle) #[-1; 1]
# 3 layer perceptrone with neurons=input+10 - relu !
# output (power, stearing_wheel) - softmax ! # (-1; 1)
return append(intersects, [self.speed/max_speed, self.wheels_angle/max_turning_angle, self.angle/(2*pi)])
def theta_deliminiter(self):
return (sensors_nb + 3 + 1)*NEURONS_NB
def get_theta1(self):
return copy(self.gen[:self.theta_deliminiter()].reshape((sensors_nb + 3 + 1, NEURONS_NB))) #+bias size = (15, 10)
def get_theta2(self):
return copy(self.gen[self.theta_deliminiter():].reshape((NEURONS_NB + 1, 2))) #+bias size = (11, 2)
def set_theta1(self, theta1):
self.gen[:self.theta_deliminiter()] = copy(theta1.flatten())
def set_theta2(self, theta2):
self.gen[self.theta_deliminiter():] = copy(theta2.flatten())
def brain(self, intersects):
inpt = self.get_inputs(intersects)
out, z_1, z_2, z_3, a_1, a_2 = evaluate([inpt], self.get_theta1(), self.get_theta2())
return out
def get_gradient(self, X_train, Y_train, Theta_1, Theta_2):
evaluation,z_1,z_2,z_3, a_1, a_2 = evaluate(X_train, Theta_1, Theta_2)
m = shape(evaluation)[0]
delta_3 = (evaluation - Y_train)*sigmoid_gradient(z_3)
# print ("delta 3", shape(delta_3))
# print ("Thet 2.T", shape(Theta_2.T))
# print ("D2 shape", shape(dot(a_2.T,delta_3)))
# # D2 = 1./m*(dot(a_2.T,delta_3) + LAMBD*Theta_2)
# print ("shape h", shape(sigmoid_gradient(z_3)))
# print ("shape a_2", shape(a_2))
D2 = dot(a_2.T, delta_3)/m
# Theta_2 = Theta_2[1:,:]
delta_2 = dot(delta_3, Theta_2.T) * relu_gradient(append(ones((shape(z_2)[0],1)), z_2, axis=1))
# print ("Thet 2.T", shape(Theta_2.T))
# print ("Z_2", shape(z_2))
# print ("dot shape", shape(dot(delta_3, Theta_2.T)))
# print ("delta 2", shape(delta_2))
#
# Theta_2[0:1,:]=0 #not normiizing bias
# delta_2 = delta_2[:,1:] #dropping bias
# print ("delta_2", shape(delta_2))
# print ("theta 1", shape(Theta_1))
# print ("z_1", shape(z_1))
delta_2 = delta_2[:,1:]
D1 = (dot(z_1.T,delta_2))/m
# Theta_1 = Theta_1[1:,:]
# delta_1 = dot(delta_2, Theta_1.T) * sigmoid_gradient(z_1)
# print ("delta_1", shape(delta_1))
# Theta_1[0:1,:]=0
return D1, D2
def train_brain(self, X_train, Y_train, X_test = NaN, Y_test = NaN, alpha = 0.5, epochs = 500):
Theta_1 = self.get_theta1()
Theta_2 = self.get_theta2()
m = shape(X_train)[0]
J = []
J_test = []
for i in range(epochs):
D1, D2 = self.get_gradient(X_train, Y_train, Theta_1, Theta_2)
Theta_1 = Theta_1 - alpha*D1 - LAMBD/(2*m)
Theta_2 = Theta_2 - alpha*D2 - LAMBD/(2*m)
J.append(cost(X_train, Y_train, Theta_1, Theta_2))
J_test.append(cost(X_test, Y_test, Theta_1, Theta_2))
self.set_theta1(Theta_1)
self.set_theta2(Theta_2)
return J, J_test
def reset(self, start):
self.score = 0
self.position = start
self.in_accident = False
self.finished = False
self.angle = 0
self.wheels_angle = 0
self.speed = 0
self.start_time = time()