@@ -3,52 +3,52 @@ Basic exercises on Machine Learning with Python
3
3
4
4
![ alt text] ( https://github.com/sarincr/Machine-Learning-Python-Bootcamp/blob/master/IBM%20Badges.png )
5
5
6
- 01.Python Basics.ipynb
7
- 02.Arrays.ipynb
8
- 03.Numpy.ipynb
9
- 04.Lists.ipynb
10
- 05.InOut.ipynb
11
- 06.Tuple.ipynb
12
- 07.Sets.ipynb
13
- 08.Dictionary .ipynb
14
- 09.Directory.ipynb
15
- 10.Exceptions.ipynb
16
- 11.Custom Exceptions.ipynb
17
- 12.Class.ipynb
18
- 13.Inheritance.ipynb
19
- 14.Modules.ipynb
20
- 15.Math and Stats.ipynb
21
- 16.Matplotlib.ipynb
22
- 17.Seaborn.ipynb
23
- 18.SimPy.ipynb
24
- 19.Pendulum.ipynb
25
- 20.Arow module.ipynb
26
- 21.Decision TreesVIz.ipynb
27
- 22.Requests.ipynb
28
- 23.Tensorflow Basics.ipynb
29
- 24.Stumpy.ipynb
30
- 25.Linear_Regression.ipynb
31
- 26.Logistic_regression.ipynb
32
- 27.XGBRegressor.py
33
- 28.Ridge_Regression.ipynb
34
- 29.Support_Vector_Regression.ipynb
35
- 30.Lasso_Regression.ipynb
36
- 31.Bayesian_Ridge_Regression.ipynb
37
- 32.MLPRegressor.ipynb
38
- 33.Random_Forest_Regression.ipynb
39
- 34.PLSRegression.ipynb
40
- 35.DecisionTreeRegressor.ipynb
41
- 36.Agglomerative_Clustering.ipynb
42
- 37.ARIMA.ipynb
43
- 38.K_Nearest_Neighbors_Regression _ .ipynb
44
- 39.SVC_linear.ipynb
45
- 40.SVC_RBF.ipynb
46
- 41.SVC_Poly.ipynb
47
- 42.MLPClassifier.ipynb
48
- 43.KNeighborsClassifieripynb.ipynb
49
- 44.GaussianProcessClassifier.ipynb
50
- 45.DecisionTreeClassifier.ipynb
51
- 46.RandomForestClassifier.ipynb
52
- 47.AdaBoostClassifier.ipynb
53
- 48.GaussianNB.ipynb
54
- 49.K_Means_Clustering.ipynb
6
+ 01.Python Basics \
7
+ 02.Arrays\
8
+ 03.Numpy\
9
+ 04.Lists\
10
+ 05.InOut\
11
+ 06.Tuple\
12
+ 07.Sets\
13
+ 08.Dictionary\
14
+ 09.Directory\
15
+ 10.Exceptions\
16
+ 11.Custom Exceptions\
17
+ 12.Class\
18
+ 13.Inheritance\
19
+ 14.Modules\
20
+ 15.Math and Stats\
21
+ 16.Matplotlib\
22
+ 17.Seaborn\
23
+ 18.SimPy\
24
+ 19.Pendulum\
25
+ 20.Arow module\
26
+ 21.Decision TreesVIz\
27
+ 22.Requests\
28
+ 23.Tensorflow Basics\
29
+ 24.Stumpy\
30
+ 25.Linear_Regression\
31
+ 26.Logistic_regression\
32
+ 27.XGBRegressor\
33
+ 28.Ridge_Regression\
34
+ 29.Support_Vector_Regression\
35
+ 30.Lasso_Regression\
36
+ 31.Bayesian_Ridge_Regression\
37
+ 32.MLPRegressor\
38
+ 33.Random_Forest_Regression\
39
+ 34.PLSRegression\
40
+ 35.DecisionTreeRegressor\
41
+ 36.Agglomerative_Clustering\
42
+ 37.ARIMA\
43
+ 38.K_Nearest_Neighbors_Regression \
44
+ 39.SVC_linear\
45
+ 40.SVC_RBF\
46
+ 41.SVC_Poly\
47
+ 42.MLPClassifier\
48
+ 43.KNeighborsClassifier \
49
+ 44.GaussianProcessClassifier\
50
+ 45.DecisionTreeClassifier\
51
+ 46.RandomForestClassifier\
52
+ 47.AdaBoostClassifier\
53
+ 48.GaussianNB\
54
+ 49.K_Means_Clustering\
0 commit comments