|
151 | 151 | "source": [
|
152 | 152 | "sess.close()"
|
153 | 153 | ]
|
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 10, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [], |
| 160 | + "source": [ |
| 161 | + "import numpy as np" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": 11, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "X_1 = tf.placeholder(tf.float32, name = \"X_1\")" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": 12, |
| 176 | + "metadata": {}, |
| 177 | + "outputs": [], |
| 178 | + "source": [ |
| 179 | + "X_2 = tf.placeholder(tf.float32, name = \"X_2\")" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 13, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [ |
| 188 | + "multiply = tf.multiply(X_1, X_2, name = \"multiply\")" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": 14, |
| 194 | + "metadata": {}, |
| 195 | + "outputs": [ |
| 196 | + { |
| 197 | + "name": "stdout", |
| 198 | + "output_type": "stream", |
| 199 | + "text": [ |
| 200 | + "[ 4. 10. 18.]\n" |
| 201 | + ] |
| 202 | + } |
| 203 | + ], |
| 204 | + "source": [ |
| 205 | + "with tf.Session() as session:\n", |
| 206 | + " result = session.run(multiply, feed_dict={X_1:[1,2,3], X_2:[4,5,6]})\n", |
| 207 | + " print(result)" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": 15, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [ |
| 215 | + { |
| 216 | + "name": "stdout", |
| 217 | + "output_type": "stream", |
| 218 | + "text": [ |
| 219 | + "[ 5 12 21 32]\n" |
| 220 | + ] |
| 221 | + } |
| 222 | + ], |
| 223 | + "source": [ |
| 224 | + "# Import `tensorflow`\n", |
| 225 | + "import tensorflow as tf\n", |
| 226 | + "\n", |
| 227 | + "# Initialize two constants\n", |
| 228 | + "x1 = tf.constant([1,2,3,4])\n", |
| 229 | + "x2 = tf.constant([5,6,7,8])\n", |
| 230 | + "\n", |
| 231 | + "# Multiply\n", |
| 232 | + "result = tf.multiply(x1, x2)\n", |
| 233 | + "\n", |
| 234 | + "# Initialize Session and run `result`\n", |
| 235 | + "with tf.Session() as sess:\n", |
| 236 | + " output = sess.run(result)\n", |
| 237 | + " print(output)" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 16, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "matrix1 = np.array([(2,2,2),(2,2,2),(2,2,2)],dtype = 'int32')\n", |
| 247 | + "matrix2 = np.array([(1,1,1),(1,1,1),(1,1,1)],dtype = 'int32')" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": 17, |
| 253 | + "metadata": {}, |
| 254 | + "outputs": [ |
| 255 | + { |
| 256 | + "data": { |
| 257 | + "text/plain": [ |
| 258 | + "array([[2, 2, 2],\n", |
| 259 | + " [2, 2, 2],\n", |
| 260 | + " [2, 2, 2]], dtype=int32)" |
| 261 | + ] |
| 262 | + }, |
| 263 | + "execution_count": 17, |
| 264 | + "metadata": {}, |
| 265 | + "output_type": "execute_result" |
| 266 | + } |
| 267 | + ], |
| 268 | + "source": [ |
| 269 | + "matrix1" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": 18, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [ |
| 277 | + { |
| 278 | + "data": { |
| 279 | + "text/plain": [ |
| 280 | + "array([[1, 1, 1],\n", |
| 281 | + " [1, 1, 1],\n", |
| 282 | + " [1, 1, 1]], dtype=int32)" |
| 283 | + ] |
| 284 | + }, |
| 285 | + "execution_count": 18, |
| 286 | + "metadata": {}, |
| 287 | + "output_type": "execute_result" |
| 288 | + } |
| 289 | + ], |
| 290 | + "source": [ |
| 291 | + "matrix2" |
| 292 | + ] |
| 293 | + }, |
| 294 | + { |
| 295 | + "cell_type": "code", |
| 296 | + "execution_count": 19, |
| 297 | + "metadata": {}, |
| 298 | + "outputs": [], |
| 299 | + "source": [ |
| 300 | + "matrix1 = tf.constant(matrix1)\n", |
| 301 | + "matrix2 = tf.constant(matrix2)" |
| 302 | + ] |
| 303 | + }, |
| 304 | + { |
| 305 | + "cell_type": "code", |
| 306 | + "execution_count": 20, |
| 307 | + "metadata": {}, |
| 308 | + "outputs": [], |
| 309 | + "source": [ |
| 310 | + "matrix_product = tf.matmul(matrix1, matrix2)" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": 21, |
| 316 | + "metadata": {}, |
| 317 | + "outputs": [], |
| 318 | + "source": [ |
| 319 | + "matrix_sum = tf.add(matrix1,matrix2)" |
| 320 | + ] |
| 321 | + }, |
| 322 | + { |
| 323 | + "cell_type": "code", |
| 324 | + "execution_count": 22, |
| 325 | + "metadata": {}, |
| 326 | + "outputs": [], |
| 327 | + "source": [ |
| 328 | + "matrix_3 = np.array([(2,7,2),(1,4,2),(9,0,2)],dtype = 'float32')" |
| 329 | + ] |
| 330 | + }, |
| 331 | + { |
| 332 | + "cell_type": "code", |
| 333 | + "execution_count": 23, |
| 334 | + "metadata": {}, |
| 335 | + "outputs": [ |
| 336 | + { |
| 337 | + "name": "stdout", |
| 338 | + "output_type": "stream", |
| 339 | + "text": [ |
| 340 | + "[[2. 7. 2.]\n", |
| 341 | + " [1. 4. 2.]\n", |
| 342 | + " [9. 0. 2.]]\n" |
| 343 | + ] |
| 344 | + } |
| 345 | + ], |
| 346 | + "source": [ |
| 347 | + "print(matrix_3)" |
| 348 | + ] |
| 349 | + }, |
| 350 | + { |
| 351 | + "cell_type": "code", |
| 352 | + "execution_count": 24, |
| 353 | + "metadata": {}, |
| 354 | + "outputs": [], |
| 355 | + "source": [ |
| 356 | + "matrix_det = tf.matrix_determinant(matrix_3)" |
| 357 | + ] |
| 358 | + }, |
| 359 | + { |
| 360 | + "cell_type": "code", |
| 361 | + "execution_count": 25, |
| 362 | + "metadata": {}, |
| 363 | + "outputs": [], |
| 364 | + "source": [ |
| 365 | + "with tf.Session() as sess:\n", |
| 366 | + " result1 = sess.run(matrix_product)\n", |
| 367 | + " result2 = sess.run(matrix_sum)\n", |
| 368 | + " result3 = sess.run(matrix_det)" |
| 369 | + ] |
| 370 | + }, |
| 371 | + { |
| 372 | + "cell_type": "code", |
| 373 | + "execution_count": 26, |
| 374 | + "metadata": {}, |
| 375 | + "outputs": [ |
| 376 | + { |
| 377 | + "name": "stdout", |
| 378 | + "output_type": "stream", |
| 379 | + "text": [ |
| 380 | + "[[6 6 6]\n", |
| 381 | + " [6 6 6]\n", |
| 382 | + " [6 6 6]]\n" |
| 383 | + ] |
| 384 | + } |
| 385 | + ], |
| 386 | + "source": [ |
| 387 | + "print (result1)" |
| 388 | + ] |
| 389 | + }, |
| 390 | + { |
| 391 | + "cell_type": "code", |
| 392 | + "execution_count": 27, |
| 393 | + "metadata": {}, |
| 394 | + "outputs": [ |
| 395 | + { |
| 396 | + "name": "stdout", |
| 397 | + "output_type": "stream", |
| 398 | + "text": [ |
| 399 | + "[[3 3 3]\n", |
| 400 | + " [3 3 3]\n", |
| 401 | + " [3 3 3]]\n" |
| 402 | + ] |
| 403 | + } |
| 404 | + ], |
| 405 | + "source": [ |
| 406 | + "print (result2)" |
| 407 | + ] |
| 408 | + }, |
| 409 | + { |
| 410 | + "cell_type": "code", |
| 411 | + "execution_count": 28, |
| 412 | + "metadata": {}, |
| 413 | + "outputs": [ |
| 414 | + { |
| 415 | + "name": "stdout", |
| 416 | + "output_type": "stream", |
| 417 | + "text": [ |
| 418 | + "55.999992\n" |
| 419 | + ] |
| 420 | + } |
| 421 | + ], |
| 422 | + "source": [ |
| 423 | + "print (result3)" |
| 424 | + ] |
| 425 | + }, |
| 426 | + { |
| 427 | + "cell_type": "code", |
| 428 | + "execution_count": 29, |
| 429 | + "metadata": {}, |
| 430 | + "outputs": [], |
| 431 | + "source": [ |
| 432 | + "import tensorflow as tf\n", |
| 433 | + "import numpy as np\n", |
| 434 | + "from tensorflow.examples.tutorials.mnist import input_data" |
| 435 | + ] |
| 436 | + }, |
| 437 | + { |
| 438 | + "cell_type": "code", |
| 439 | + "execution_count": 30, |
| 440 | + "metadata": {}, |
| 441 | + "outputs": [], |
| 442 | + "source": [ |
| 443 | + "def run_cnn():\n", |
| 444 | + " mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot = True)\n", |
| 445 | + " learning_rate = 0.0001\n", |
| 446 | + " epochs = 10\n", |
| 447 | + " batch_size = 50" |
| 448 | + ] |
| 449 | + }, |
| 450 | + { |
| 451 | + "cell_type": "code", |
| 452 | + "execution_count": 31, |
| 453 | + "metadata": {}, |
| 454 | + "outputs": [], |
| 455 | + "source": [ |
| 456 | + "x = tf.placeholder(tf.float32, [None, 784])" |
| 457 | + ] |
| 458 | + }, |
| 459 | + { |
| 460 | + "cell_type": "code", |
| 461 | + "execution_count": 32, |
| 462 | + "metadata": {}, |
| 463 | + "outputs": [], |
| 464 | + "source": [ |
| 465 | + "x_shaped = tf.reshape(x, [-1, 28, 28, 1])" |
| 466 | + ] |
| 467 | + }, |
| 468 | + { |
| 469 | + "cell_type": "code", |
| 470 | + "execution_count": 33, |
| 471 | + "metadata": {}, |
| 472 | + "outputs": [], |
| 473 | + "source": [ |
| 474 | + "y = tf.placeholder(tf.float32, [None, 10])" |
| 475 | + ] |
| 476 | + }, |
| 477 | + { |
| 478 | + "cell_type": "code", |
| 479 | + "execution_count": 34, |
| 480 | + "metadata": {}, |
| 481 | + "outputs": [], |
| 482 | + "source": [ |
| 483 | + "x = tf.constant(-2.0, name=\"i\", dtype=tf.float32)\n", |
| 484 | + "a = tf.constant(5.0, name=\"j\", dtype=tf.float32)\n", |
| 485 | + "b = tf.constant(13.0, name=\"k\", dtype=tf.float32)" |
| 486 | + ] |
| 487 | + }, |
| 488 | + { |
| 489 | + "cell_type": "code", |
| 490 | + "execution_count": 35, |
| 491 | + "metadata": {}, |
| 492 | + "outputs": [ |
| 493 | + { |
| 494 | + "name": "stdout", |
| 495 | + "output_type": "stream", |
| 496 | + "text": [ |
| 497 | + "-2.0\n" |
| 498 | + ] |
| 499 | + } |
| 500 | + ], |
| 501 | + "source": [ |
| 502 | + "sess = tf.Session()\n", |
| 503 | + "print(sess.run(x))" |
| 504 | + ] |
154 | 505 | }
|
155 | 506 | ],
|
156 | 507 | "metadata": {
|
|
0 commit comments