-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathres.py
821 lines (730 loc) · 33.7 KB
/
res.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
r"""
SANS Resolution Simulator
=========================
Propagate a neutron from an isotropic source through a source and sample
pinhole and onto a detector. For each pixel on the detector, compute the
effective resolution.
Usage
=====
Modify instrument geometry, target pixels and number of neutrons at the
bottom of the script and run using::
python res.py
You can look at the various stages of the simulation by uncommenting
the intermediate "plot" function calls.
Theory
======
The first step is to generate a set of neutrons at small angle $\theta$
along the direction of the beam, and uniform phi, with starting position
$(x,y)$ in the source aperture. Each neutron is given an independent
wavelength $\lambda$ from a triangular distribution resulting from the
upstream velocity selector. The $\theta$ range is determined by the
distance between the source aperture and the sample aperture, with
extra radius to account for finite aperture size and gravity effects.
The $(\theta, \phi)$ spherical coordinates used to generate the initial
neutron population are converted to $(\theta_{\rm az}, \theta_{\rm el})
to make gravity effects easier to calculate.
The sample aperture is shifted slightly upward from $(0,0)$ so that
a beam of neutrons of the alignment wavelength will be centered on
the detector. The aperture is not readjusted when changing wavelengths,
which will result in a main beam that is slightly above $(0,0)$ for
shorter wavelengths, or below for longer wavelengths. At 14m, changing
from 8 A to 16 A will drop the beam by 10 pixels or so. Since data
reduction will recenter $(q_x,q_y)$ on the detector position, the
detector is shifted so that the center pixel is at $q=0$.
After filtering through the sample aperture, we are left with a
selection neutrons at position $(s_x, s_y)$ and angle
$(s_{\rm az}, s_{\rm el})$ incident on the sample. For each
source neutron, we generate a random position $(p_x, p_y)$ within
the target pixel on the detector, end determine the direction
$q_{\rm az}$ and throwing angle $q_{\rm el}$ required to reach that
detector position.
To determine the $(\theta,\phi)$ angle of scattering, we compare
the position $D$ on the detector of the incident neutron travelling
in a straight line without gravity (this is the beam center), to
the position $P$ on the detector of the scattered neutron travelling
in a straight line without gravity (this is the relative $(q_x,q_y$)
of the scattered neutron). Given the position $S$ of the sample
$\theta = \tan^{-1}(||Q-D||/||D-S||)$ and
$\phi = \tan^{-1}((pn_y-d_y)/(pn_x-d_x))$.
The scattering intensity $I(q)$ which we are using to compute the
resolution effects is only a function of angle and wavelength.
The gravity effect is accounted for in determining the throwing
angle required to reach the pixel.
We can estimate the resolution of the pixel $(i,j)$ by looking
at the histograms of our populations of $\theta$, $\phi$,
$Q_\parallel = \frac{4 \pi}{\lambda} \sin(theta/2)$
and $Q_\perp = Q_\parallel (\phi - \bar\phi)$ where $\bar\phi$
is the nominal scattering angle of the pixel.
The above $(\theta,\phi)$ calculation is slightly incorrect since
the point $P$ is in the plane of the detector, which is not quite
normal to the direction of the beam $(s_{\rm az}, s_{\rm el})$
incident on the sample. This effect is insignificant so it is
not active in the code, but it is calculated as follows.
Let $S = (s_x, s_y, z_s)$ be a point in the sample where we have a
simulated neutron travelling in direction
$n = (s_\rm{az}, s_\rm{el}) = (s_\theta \cos s_\phi, s_\theta \sin s_\phi)$,
and let $P = (p_x, p_y, z_d)$ be a point on the detector which receives the
scattered neutron. We calculate the point $D = (d_x, d_y, z_d)
= (s_x + (z_d-z_s)*\tan s_\rm{az}, s_y + (z_d-z_s)*\tan s_\rm{el}, z_d)$
where the neutron travelling along $n$ would intercept the detector. We then
take the plane through $D$ normal to $n$ and intersect it with the line
$\bar{SP}$ as follows:
.. math::
Pn = S + { (D-S) \cdot n \over I \cdot n } I
= S + { ||D-S|| \over I \cdot n } I
where the $n = (D-S) / ||D-S||$ is the plane normal to the incident neutron
where it would intercept the detector, and $I = (P-S) / ||P-S||$ is the
direction of the scattered neutron which would intercept the detector at $P$.
Given the small angles used in SAS, $Pn \approx P$.
"""
from __future__ import division, print_function
from numpy import (
sqrt, exp, log, pi, sin, cos, tan,
arccos, arcsin, arctan, arctan2, degrees)
from scipy.stats import circmean, circstd
from numpy.random import rand
import numpy as np
import matplotlib.pyplot as plt
# pylint: disable=invalid-name
earth_gravity = 9.80665 # m/s^2
neutron_mass = 1.00866491597 #(43) u
plancks_constant = 4.13566733e-15 #(10) eV s
electron_volt = 1.602176487e-19 #(40) J / eV
atomic_mass_constant = 1.660538782e-27 #(83) kg / u
VELOCITY_FACTOR = (plancks_constant*electron_volt
/ (neutron_mass * atomic_mass_constant)) * 1e10
def to_velocity(wavelength): # m/s
"""convert velocity in m/s to wavelength in Angstroms"""
return VELOCITY_FACTOR / wavelength
def to_wavelength(velocity): # A
"""convert wavelength in Angstroms to velocity in m/s"""
return VELOCITY_FACTOR / velocity
def plot3(x, y, z):
"""3D scatter plot in unit box"""
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z)
ax.set_xlim3d(-1, 1)
ax.set_ylim3d(-1, 1)
ax.set_zlim3d(-1, 1)
fig.canvas.draw()
def plot(x, y, title):
"""1D scatter plot with equal axes"""
plt.plot(x, y, '.')
plt.axis('equal')
plt.title(title)
plt.grid(True)
def plot_angles(theta, phi, bins=50):
"""plot angle densities"""
plt.subplot(131)
plt.hist(degrees(theta), bins=bins)
plt.xlabel("theta (degrees)")
plt.grid(True)
plt.subplot(132)
plt.hist(degrees(phi), bins=bins)
plt.xlabel("phi (degrees)")
plt.grid(True)
plt.subplot(133)
plt.plot(degrees(theta), degrees(phi), '.', ms=1)
plt.grid(True)
plt.xlabel('theta (degrees)')
plt.ylabel('phi (degrees)')
def plot_q(q, phi, title, plot_phi=True):
"""plot q densities"""
plt.suptitle(title)
ax = plt.subplot(131 if plot_phi else 111)
n, bins, patches = plt.hist(q, bins=50, density=True)
mean, std = np.mean(q), np.std(q, ddof=1)
plt.plot(bins, exp(-0.5*((bins-mean)/std)**2)/sqrt(2*pi*std**2))
q_low, q_high = mean-2.5*std, mean+3*std
#q_low, q_high = mean**2/(mean + 3*std), mean + 3*std
trans = ax.get_xaxis_transform()
ax.vlines([q_low, q_high], 0, 1, transform=trans, linestyle='dashed')
plt.text(q_low, 1, "\n $\\mu - 2.5\\sigma$",
transform=trans, va='top', ha='left')
plt.text(q_high, 1, "\n$\\mu + 3\\sigma$ ",
transform=trans, va='top', ha='right')
plt.grid(True)
plt.xlabel("Q (1/A)")
if not plot_phi:
return
ax = plt.subplot(132)
n, bins, patches = plt.hist(degrees(phi), bins=50, density=True)
mean, std = np.mean(degrees(phi)), np.std(degrees(phi), ddof=1)
plt.plot(bins, exp(-0.5*((bins-mean)/std)**2)/sqrt(2*pi*std**2))
plt.grid(True)
plt.xlabel("phi (degrees)")
plt.subplot(133)
plt.plot(q, degrees(phi), '.', ms=1)
plt.grid(True)
plt.xlabel('Q (1/A)')
plt.ylabel('phi (degrees)')
def plot_qperp(q, qperp, title):
"""plot q parallel vs. q perpendicular"""
plt.subplot(131)
plt.hist(q, bins=50)
plt.grid(True)
plt.xlabel(r"$Q_\parallel (1/A)$")
plt.subplot(132)
plt.hist(qperp, bins=50)
plt.grid(True)
plt.xlabel(r"$Q_\perp (1/A)$")
plt.subplot(133)
plt.plot(q, qperp, '.')
plt.grid(True)
plt.xlabel(r'$Q_\parallel (1/A)$')
plt.ylabel(r'$Q_\perp (1/A)$')
plt.suptitle(title)
def triangle(N, a=-1, b=1, c=0):
"""
Pull random numbers from a triangular distribution over [a, b]
with peak at c in [a, b].
"""
cutoff = (c-a)/(b-a)
U = rand(N)
idx = (U > cutoff)
X = np.empty_like(U)
X[~idx] = a + sqrt(U[~idx]*(b-a)*(c-a))
X[idx] = b - sqrt((1-U[idx])*(b-a)*(b-c))
return X
def ballistics(az, el, L, x, y, d, a=earth_gravity):
# velocity (mm/s)
v = to_velocity(L)
vx, vy = v*cos(el), v*sin(el)
# distance (m) between source and sample in the direction of travel
daz = 0.001*d/cos(az)
# position on sample (mm)
x = x + 1000*daz*(sin(az))
y = y + 1000*daz*(tan(el) - 0.5*a*daz/vx**2)
# velocity, wavelength and elevation on sample
vy = vy - a*daz/vx
v = sqrt(vx**2 + vy**2)
el = arctan2(vy, vx)
L = to_wavelength(v)
return az, el, L, x, y
def throwing_angle(v, x, y, a=earth_gravity):
"""
angle to throw at velocity v so that (0, 0) -> (x, y)
returns the valid index, and the plus and minus angles which
allow the ball to get there
if there is only one angle, it is returned twice
"""
if a == 0:
idx = slice(None, None, None)
angle = arctan2(y, x)
return idx, angle, angle
else:
radical = v**4 - a*(a*x**2 + 2*y*v**2)
radical[radical < 0] = 0
#plus = arctan2(v**2 + sqrt(radical), a*x)
minus = arctan2(v**2 - sqrt(radical), a*x)
#plt.subplot(131); plt.hist(radical)
#plt.subplot(132); plt.hist(degrees(plus))
#plt.subplot(133); plt.hist(degrees(minus))
return minus
def aperture_alignment(wavelength, aligned_wavelength, Dsource, Ddetector):
# SANS instruments are approximately horizontal, so they will experience
# a gravity drop proportional to the distance travelled. We can set
# the elevation required to hit the target based on this distance. We
# will add this correction to all elevations.
Ddetector += Dsource
if aligned_wavelength is None:
aligned_wavelength = wavelength
aligned_velocity = to_velocity(aligned_wavelength) # m/s
el = 0.5*arcsin(earth_gravity*0.001*(Ddetector)/aligned_velocity**2)
velocity = to_velocity(wavelength) # m/s
# We need to shift the sample aperture into the ballistic trajectory by
# computing the height of the ball at the source to sample distance
y = Dsource*tan(el) \
- 1000*0.5*earth_gravity*(0.001*Dsource/(velocity*cos(el)))**2
# We need to compute the position p where the direct beam will encounter
# the detector.
p = Ddetector*tan(el) \
- 1000*0.5*earth_gravity*(0.001*Ddetector/(velocity*cos(el)))**2
return el, y, p
def nominal_q(sx, sy, az_in, el_in, az_out, el_out, dz):
nx, ny = sx + dz * tan(az_in), sy + dz * tan(el_in)
nd = sqrt((nx-sx)**2 + (ny-sy)**2 + dz**2)
#plt.subplot(131); plot(nx/5, ny/5, 'G: direct flight beam center')
px, py = sx + dz * tan(az_out), sy + dz * tan(el_out)
pd = sqrt((px-sx)**2 + (py-sy)**2 + dz**2)
#plt.subplot(122); plot(px/5, py/5, 'G: direct flight scattered beam')
if 0:
# Correction to move px, py into the q normal plane. This is
# insignificant for small angle scattering.
nx_hat, ny_hat, nz_hat = (nx-sx)/nd, (ny-sy)/nd, dz/nd
px_hat, py_hat, pz_hat = (px-sx)/pd, (py-sy)/pd, dz/pd
d = nd / (px_hat*nx_hat + py_hat*ny_hat + pz_hat*nz_hat)
px, py = sx + px_hat*d, sy + py_hat*d
#plt.subplot(122); plot((px)/5, (py)/5, 'G: scattered beam on q normal plane')
# Note: px, py is the location of the scattered neutron relative to the
# beam center without gravity in detector coordinates, not the qx, qy vector
# in inverse coordinates. This allows us to compute the scattered angle at
# the sample, returning theta and phi.
qd = sqrt((px-nx)**2 + (py-ny)**2)
theta, phi = arctan2(qd, nd)/2, arctan2(py-ny, px-nx)
return theta, phi
def resolution(R1, R2, D1, D2, dx, dy, L, dL):
dQx = sqrt((2*pi/(L*D2))**2)
class Spectrum:
def __init__(self, L, I):
self.L = L
self.I = I
# [0, p1, p1+p1, .., 1]
self._cdf = np.hstack((0., np.cumsum(I)/np.sum(I)))
self._edges = np.hstack((
(3*L[0]-L[1])/2, # Half-step before first wavelength
(L[:-1]+L[1:])/2, # Mid-points between wavelengths
(3*L[-1]-L[-2])/2, # Half-step after last wavelength
))
self.center = np.sum(L*I)/np.sum(I)
def rand(self, n=1):
samples = np.interp(np.random.rand(n), self._cdf, self._edges)
return samples
class Triangle:
def __init__(self, wavelength, resolution):
self._dL = wavelength*resolution
self.center = wavelength
def rand(self, n=1):
# source wavelength is a triangular distribution with fwhm resolution dL/L
samples = triangle(n)*self._dL + self.center
return samples
def neutrons_on_sample(Rsource, Rsample, Rbeamstop, Dsource, Ddetector,
wavelength, wavelength_resolution, aligned_wavelength,
N):
# ===== Random initial state ====
# theta is pi/2 minus latitude, phi is longitude, z is the rotational axis
# The z-axis connects the center of the apertures and detector.
# Limit the source angles to those that can make it from one side of the
# source aperture to the other side of the sample aperture.
#print("v_min=%.2f m/s, gravity_drop=%.2f mm"%(min_velocity, gravity_drop))
limit = 1 - 1/sqrt(1+((Rsource+Rsample)/Dsource)**2)
theta, phi = arccos(1-rand(N)*limit), 2*pi*rand(N)
#plot3(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)); return
#print("limit", limit)
#plot(degrees(theta), degrees(phi), "polar vs equatorial angles"); return
if isinstance(wavelength_resolution, tuple):
dist = Spectrum(*wavelength_resolution)
else:
dist = Triangle(wavelength, wavelength_resolution)
L = dist.rand(len(theta))
#plt.figure(); plt.hist(L, bins=50); # plt.show()
# source position: x, y is the isotropic incident location
alpha, r = 2*pi*rand(N), Rsource*arccos(rand(N))*2/pi
x, y = r*cos(alpha), r*sin(alpha)
#plot(x, y, "neutron position in source aperture"); return
# ==== Gravity correction ====
# gravity calculations work better with azimuth and elevation
az, el = theta*cos(phi), theta*sin(phi)
delta_el, delta_y, delta_p = aperture_alignment(
wavelength, aligned_wavelength, Dsource, Ddetector)
el += delta_el
# ===== Compute image on sample =====
#plot(degrees(az), degrees(el), "azimuthal angle vs elevation"); return
s_az, s_el, s_L, s_x, s_y = ballistics(az, el, L, x, y, Dsource)
#plt.hist(s_L, bins=50); return # updated wavelengths
#plot(s_x, s_y, "G: neutron position on sample aperture"); return
#plot(s_az, s_el, "G: sample aperture azimuthal angle vs elevation"); return
# filter through sample aperture
idx = (s_x**2 + (s_y-delta_y)**2 < Rsample**2)
s_az, s_el, s_L, s_x, s_y = [w[idx] for w in (s_az, s_el, s_L, s_x, s_y)]
#plt.hist(s_L, bins=50); plt.title("G: sample wavelength"); return
#plot(az[idx], el[idx], "G: sample azimuthal angle vs elevation"); return
#plot(s_az, s_el, "G: sample azimuthal angle vs elevation"); return
#plot(s_x, s_y, "G: neutron position in sample"); return
return s_az, s_el, s_L, s_x, s_y
# All lengths are in millimeters
def pinhole(pixel_i, pixel_j, pixel_width=5, pixel_height=5,
source_aperture=50.8, sample_aperture=12.7,
source_distance=8500, detector_distance=4000,
beamstop=50.8,
wavelength=8, wavelength_resolution=0.12, aligned_wavelength=None,
N=5000, phi_mask=7.1,
Iq=None):
PI, PJ = np.meshgrid(pixel_i, pixel_j)
# ===== Generate a population of neutrons at the sample position =====
Rsource = source_aperture/2
Rsample = sample_aperture/2
Rbeamstop = beamstop/2
Dsource = source_distance
Ddetector = detector_distance
delta_el, delta_y, delta_p = aperture_alignment(
wavelength, aligned_wavelength, Dsource, Ddetector)
s_az, s_el, s_L, s_x, s_y = neutrons_on_sample(
Rsource, Rsample, Rbeamstop, Dsource, Ddetector,
wavelength, wavelength_resolution, aligned_wavelength,
N)
# ==== Compute image on detector without sample ====
#
#d_az, d_el, d_L, d_x, d_y = ballistics(s_az, s_el, s_L, s_x, s_y, Ddetector)
### filter through beam stop
##idx = (d_x**2 + (d_y-delta_y)**2 < Rbeamstop**2)
##s_az, s_el, s_L, s_x, s_y = [w[idx] for w in (s_az, s_el, s_L, s_x, s_y)]
##d_az, d_el, d_L, d_x, d_y = [w[idx] for w in (d_az, d_el, d_L, d_x, d_y)]
#plot(d_x/pixel_width, d_y/pixel_height, "G: neutron detector pixel"); return
# ==== Scatter off sample ====
mode = None
#mode = 'sum'
#mode = 'scatter'
if mode == 'sum' and Iq is not None:
# For each pixel, compute the scattering angle between the neutron
# on a direct path to the detector vs the pixel center, and compute
# I(q) based on that. Seems to underestimate the dQ/Q resolution
# for the pixels, so don't use this without figuring out what's wrong.
raise NotImplementedError("experimental code; see source")
# pixel centers relative to beam center
cx, cy = PI*pixel_width, PJ*pixel_height
pixel_r = sqrt(cx**2 + cy**2)
pixel_theta = arctan2(pixel_r, Ddetector)/2
#pixel_phi = arctan2(cy, cx)
pixel_nominal_q = 4*pi * sin(pixel_theta)/wavelength
# find neutron position on the detector without scattering
d_az, d_el, d_L, d_x, d_y = ballistics(s_az, s_el, s_L, s_x, s_y, Ddetector)
# find scattering angle from each neutron to each pixel
r = sqrt(((d_x-s_x)[:, None] - cx.flatten()[None, :])**2
+ ((d_y-s_y)[:, None] - (cy+delta_p).flatten()[None, :])**2)
theta = arctan2(r, Ddetector)/2
# find q value for each neutron at each pixel
q = 4*pi*sin(theta)/d_L[:, None]
# accumulate scattering patterns across all neutrons
I = Iq(q)
pixel_Iq = np.sum(I, axis=0).reshape(PI.shape)
pixel_dIq = pixel_Iq/sqrt(len(s_x))
pixel_q = np.mean(q, axis=0).reshape(PI.shape)
pixel_dq = np.std(q, axis=0, ddof=1).reshape(PI.shape)
#print("pixel_Iq", pixel_q.shape, pixel_Iq.shape)
if mode == 'scatter' and Iq is not None:
# For each neutron figure out the relative probability of the neutron
# arriving in each individual pixel, then choose one to add it to.
# The result is way off, probably because it doesn't include the
# probability that the neutron goes to none of the pixels.
raise NotImplementedError("experimental code; see source")
# pixel centers relative to beam center
cx, cy = PI*pixel_width, PJ*pixel_height
pixel_r = sqrt(cx**2 + cy**2)
pixel_theta = arctan2(pixel_r, Ddetector)/2
#pixel_phi = arctan2(cy, cx)
pixel_q = 4*pi * sin(pixel_theta)/wavelength
# find neutron position on the detector without scattering
d_az, d_el, d_L, d_x, d_y = ballistics(s_az, s_el, s_L, s_x, s_y, Ddetector)
# find scattering angle from each neutron to each pixel
# For each neutron generate the probability distribution corresponding
# to the various pixels that the neutron might land in and pick one.
counts = np.zeros(pixel_q.size, 'i')
counts_q = np.zeros(pixel_q.size, 'd')
for xk, yk, Lk in zip(d_x-s_x, d_y-s_y, d_L):
r = sqrt((xk - cx)**2 + (yk-delta_p - cy)**2)
theta = arctan2(r, Ddetector)/2
# find q value for each neutron at each pixel
q = (4*pi*sin(theta)/Lk).flatten()
# accumulate scattering patterns across all neutrons
invcdf = np.cumsum(Iq(q))
U = np.random.uniform(0, invcdf[-1])
index = np.searchsorted(invcdf, U)
counts[index] += 1
counts_q[index] += q[index]
counts_q /= counts + (counts==0)
counts.reshape(cx.shape)
counts_q.reshape(cx.shape)
stats = []
current_j = 1000001 # arbitrary unlikely number
for p_i, p_j in zip(PI.flat, PJ.flat):
if current_j != p_j:
print("pixel j=%d"%p_j)
current_j = p_j
## Generate a new set of points on the sample for each pixel
#s_az, s_el, s_L, s_x, s_y = neutrons_on_sample(
# Rsource, Rsample, Rbeamstop, Dsource, Ddetector,
# wavelength, wavelength_resolution, aligned_wavelength,
# N)
# ==== Compute scattering theta, phi for pixel ====
# find random point in pixel i, j to scatter to
xl, xu = (p_i-0.5)*pixel_width, (p_i+0.5)*pixel_width
yl, yu = delta_p+(p_j-0.5)*pixel_height, delta_p+(p_j+0.5)*pixel_height
p_x, p_y = rand(len(s_x))*(xu-xl)+xl, rand(len(s_x))*(yu-yl)+yl
#plot(px, py, "px,py pixel locations"); return
# find the scattering angle necessary to reach point P on the detector
q_az = arctan2(p_x-s_x, np.ones_like(s_x)*Ddetector)
q_el = throwing_angle(to_velocity(s_L), 0.001*Ddetector/cos(q_az),
0.001*(p_y-s_y))
#q_theta = arccos(sin(s_el)*sin(q_el) + cos(s_el)*cos(q_el)*cos(q_az-s_az))
#q_theta_2 = arctan2(sqrt((d_x-p_x)**2+(d_y-p_y)**2)), Ddetector)
#q_phi = arctan2(q_el, q_az)
# Note that q scattering calculations look at positions on the detector
# assuming neutrons travel in a straight line, and not the positions
# according to ballistics. The ballistics are taken into account by the
# choice of initial angle such that the neutron will hit the target
# position. The scattering function operates solely on incident and
# scattered angle with no hint of gravity, and so the resolution
# function which mixes the scattering theory must reflect this.
q_theta, q_phi = nominal_q(s_x, s_y, s_az, s_el, q_az, q_el, Ddetector)
q = 4*pi*sin(q_theta)/s_L
#return
# filter through beam stop, corrected for gravity alignment
#print(Rbeamstop**2, xu**2 + (yu-delta_p)**2, xl**2 + (yl-delta_p)**2)
idx = (p_x**2 + (p_y-delta_p)**2 > Rbeamstop**2)
q_theta, q_phi, q = [w[idx] for w in (q_theta, q_phi, q)]
# ==== calculate stats ====
cx, cy = p_i*pixel_width, p_j*pixel_height
theta_nominal = arctan2(sqrt(cx**2+cy**2), Ddetector)/2
phi_nominal = arctan2(cy, cx)
q_nominal = 4*pi*sin(theta_nominal)/wavelength
qperp_nominal = 0
# Approximate q_perp as arc length between nominal phi and actual phi
# at radius q.
qperp = q*(q_phi-phi_nominal)
if len(q) > 1:
theta_mean, theta_std = np.mean(q_theta), np.std(q_theta)
phi_mean, phi_std = circmean(q_phi, -pi, pi), circstd(q_phi, -pi, pi)
q_mean, q_std = np.mean(q), np.std(q)
qperp_mean, qperp_std = np.mean(qperp), np.std(qperp)
# weight each neutron by the sample scattering
I = np.sum(Iq(q))/len(q) if Iq is not None else 0
dI = I/sqrt(len(q))
else:
print("no q values for (%d, %d)"%(p_i, p_j))
theta_mean, theta_std = theta_nominal, 0.
phi_mean, phi_std = phi_nominal, 0.
q_mean, q_std = q_nominal, 0.
qperp_mean, qperp_std = qperp_nominal, 0.
I, dI = [], []
stats.append([
theta_nominal, theta_mean, theta_std,
phi_nominal, phi_mean, phi_std,
q_nominal, q_mean, q_std,
qperp_nominal, qperp_mean, qperp_std,
I, dI,
])
config = "src-ap:%.1fcm samp-ap:%.1fcm src-dist:%.1fm det-dist:%.1fm L:%.1fA" % (
source_aperture/10, sample_aperture/10,
Dsource/1000, Ddetector/1000, wavelength)
if len(stats) == 0:
pass # No samples fell in detector region
elif len(stats) == 1:
# print stats
pixel_config = "%s pixel:%d,%d (%dX%d mm^2)" %(
config, p_i, p_j, pixel_width, pixel_height)
print(pixel_config)
#print(" nominal lambda: %.4f actual lambda: %.4f +/- %.4f (Ang)"
# % (wavelength, np.mean(s_L), np.std(s_L)))
print(" nominal 1/lambda: %.4f actual 1/lambda: %.4f +/- %.4f (1/Ang)"
% (1./wavelength, np.mean(1./s_L), np.std(1./s_L)))
print(" nominal theta: %.4f actual theta: %.4f +/- %.4f (degrees)"
% (degrees(theta_nominal), degrees(theta_mean), degrees(theta_std)))
#print(" nominal phi: %.4f actual phi: %.4f +/- %.4f (degrees)"
# % (degrees(phi_nominal), degrees(phi_mean), degrees(phi_std)))
print(" nominal q: %.4f actual q: %.4f +/- %.4f (1/Ang)"
% (q_nominal, q_mean, q_std))
#plt.hist(degrees(q_az), bins=50); plt.title("G: scattered rotation"); plt.figure()
#plt.hist(degrees(q_el), bins=50); plt.title("G: scattered elevation"); plt.figure()
#plt.hist(degrees(q_theta), bins=50); plt.title("G: Q theta"); plt.figure()
#plt.hist(q, bins=50, density=True); plt.title("G: Q"); plt.figure()
# plot resolution
qual = "for pixel %d,%d"%(p_i, p_j)
#plot_angles(q_theta, q_phi); plt.figure()
plot_q(q, q_phi, "Q %s"%qual, plot_phi=True)
#plot_q(q, q_phi, "Q %s"%qual, plot_phi=False)
#plot_q(np.log10(q), q_phi, "Q %s"%qual, plot_phi=False)
#plot_qperp(q, qperp, "Q %s"%qual)
plt.suptitle(pixel_config)
elif len(pixel_i) == 1 or len(pixel_j) == 1:
stats = np.array(stats)
plt.suptitle(config)
plt.subplot(221)
plt.plot(stats[:, 6], degrees(stats[:, 2]), '.')
plt.grid(True)
plt.xlabel(r'$Q (1/A)$')
plt.ylabel(r'$\Delta\theta (\degree)$')
plt.subplot(222)
plt.plot(stats[:, 6], degrees(stats[:, 5]), '.')
plt.grid(True)
plt.xlabel(r'$Q (1/A)$')
plt.ylabel(r'$\Delta\phi (\degree)$')
if Iq is not None:
q, dq, I, dI = stats[:, 7], stats[:, 8], stats[:, 12], stats[:, 13]
plt.subplot(223)
plt.plot(q, 100*dq/q, '.')
plt.grid(True)
plt.xlabel(r'$Q (1/A)$')
plt.ylabel(r'$\Delta Q/Q (\%)$')
plt.subplot(224)
plt.errorbar(q, I, dI, fmt='.')
plt.xscale('log')
plt.yscale('log')
if mode == 'sum':
pixel_r, pixel_q, pixel_Iq, pixel_dIq, pixel_dq = (
v.flatten() for v in (pixel_r, pixel_q, pixel_Iq, pixel_dIq, pixel_dq)
)
mask = pixel_r >= Rbeamstop
#plt.loglog(pixel_q[mask], pixel_Iq[mask], '.')
plt.loglog(pixel_q, pixel_Iq, '.')
np.savetxt("res_sum.dat", np.array([pixel_q, pixel_Iq, pixel_dIq, pixel_dq]).T)
if mode == 'scatter':
qp, Ip = pixel_q.flatten(), counts.flatten()
qp = counts_q.flatten()
mask = (pixel_r.flatten() >= Rbeamstop) & (qp > 0)
qp, Ip = qp[mask], Ip[mask]
plt.loglog(qp, Ip, '.')
coeff = np.polyfit(log(qp), log(Ip), 1)
plt.loglog(qp, exp(np.polyval(coeff, log(qp))), '-')
print("fit to line", coeff)
if False: # add fit to line slope (for power law and fractal)
coeff = np.polyfit(log(q[1:-1]), log(I[1:-1]), 1)
plt.loglog(q, exp(np.polyval(coeff, log(q))), '-')
print("fit to line", coeff)
plt.grid(True)
plt.xlabel(r'$Q (1/A)$')
plt.ylabel(r'$I (1/cm)$')
np.savetxt("res_Iq.dat", np.array([q, I, dI, dq]).T)
if 1:
plt.figure()
plt.plot(stats[:, 6], stats[:, 7], '.')
plt.xlabel("Q nominal")
plt.ylabel("Q mean")
else:
plt.subplot(223)
plt.plot(stats[:, 6], stats[:, 8], '.')
plt.grid(True)
plt.xlabel(r'$Q (1/A)$')
plt.ylabel(r'$\Delta Q_\parallel (1/A)$')
plt.subplot(224)
plt.plot(stats[:, 6], stats[:, 11], '.')
plt.grid(True)
plt.xlabel(r'$Q (1/A)$')
plt.ylabel(r'$\Delta Q_\perp (1/A)$')
else:
stats = np.array(stats)
plt.suptitle(config)
plt.subplot(131)
data, title = degrees(stats[:, 2]), r"$\Delta\theta$"
data = np.ma.array(data, mask=(stats[:, 2] == 0))
data = data.reshape(len(pixel_i), len(pixel_j))
#mask = (PI**2 + PJ**2 < phi_mask**2)
#data = np.ma.array(data, mask=mask)
#data, title = stats[:, 1]-stats[:, 0], r"$\theta - \hat\theta$"
#data = np.clip(stats[:, 1]-stats[:, 0], 0, 0.02)
plt.pcolormesh(pixel_i, pixel_j, data)
plt.grid(True)
plt.axis('equal')
plt.title(title)
plt.colorbar()
plt.subplot(132)
data, title = degrees(stats[:, 5]), r"$\Delta\phi$"
#data, title = stats[:, 4]-stats[:, 3], r"$\phi - \hat\phi$"
data = np.ma.array(data, mask=(stats[:, 5] == 0))
data = data.reshape(len(pixel_i), len(pixel_j))
#mask = (PI < phi_mask) & (abs(PJ) < phi_mask)
plt.pcolormesh(pixel_i, pixel_j, data)
plt.grid(True)
plt.axis('equal')
plt.title(title)
plt.colorbar()
plt.subplot(133)
#data, title = stats[:, 8], r"$\Delta q$"
data, title = stats[:, 8]/stats[:, 6], r"$\Delta q/q$"
data = np.ma.array(data, mask=(stats[:, 8] == 0))
data = data.reshape(len(pixel_i), len(pixel_j))
#mask = (PI**2+PJ**2 < phi_mask**2)
#data = np.ma.array(data, mask=mask)
#data, title = stats[:, 7]-stats[:, 6], r"$q - \hat q$"
#data = np.clip(stats[:, 7]-stats[:, 6], 0, 0.0005)
plt.pcolormesh(pixel_i, pixel_j, data)
plt.grid(True)
plt.axis('equal')
plt.title(title)
plt.colorbar()
def sphere(L, theta, phi, radius, contrast):
q = 4*pi*sin(phi)/L
qr = q*radius
bes = 1.0*np.ones_like(qr)
idx = qr != 0
qr = qr[idx]
sn, cn = sin(qr), cos(qr)
bes[idx] = 3.0*(sn-qr*cn)/(qr*qr*qr)
fq = (bes * contrast * 4/3*pi*radius**3)
Iq = 1e-4*fq**2
return Iq
def sphere_form(q, r):
qr = q*r
sn, cn = sin(qr), cos(qr)
F = 3.0*(sn-qr*cn)/(qr*qr*qr)
return F**2
def fractal(q, fractal_dim, radius, cor_length):
from scipy.special import gamma
D = fractal_dim
# Note: for large D-1, sin((D-1)*arctan(q*cor_length) can go negative
t1 = gamma(D+1.)/(D-1)*sin((D-1)*arctan(q*cor_length))
t2 = (q*radius) ** (-D)
t3 = (1.0 + (q*cor_length)**-2) ** (-0.5*(D-1))
term = t1 * t2 * t3
return 1.0 + term
if __name__ == "__main__":
# ==== select Q range
fields = ("source_distance", "detector_distance",
"source_aperture", "sample_aperture",
"beamstop",
"wavelength", "wavelength_resolution")
values = (
#16270, 13170, 28.6, 25.4, 50.8, 13, 0.109 # 13m @ 13A max resolution
#16270, 13170, 28.6, 25.4, 50.8, 13, 0.25 # 13m @ 13A 25% dL/L
16270, 13170, 50.0, 25.4, 50.8, 13, 0.25 # 13m @ 13A 25% dL/L divergent
#15727, 14547, 76.0, 25.4, 50.8, 6, 0.124 # 14.5m @ 6A low Q
#6959, 4000, 50.8, 9.5, 50.8, 6, 0.145 # 4m @ 6A on NG7
#13125, 13000, 50.8, 49.5, 101.6, 6, 0.14 # 13m @ 6A on NG7
#10070, 4050, 100.0, 25.4, 50.8, 8, 0.125 # 4m @ 8A
#10070, 4050, 100.0, 50.9, 87.5, 8, 0.125 # 4m @ 8A; very bad res
#3870, 1380, 100.0, 25.4, 50.8, 6, 0.236 # 1.3m @ 6A max flux
#3870, 1380, 100.0, 50.9, 50.8, 6, 0.236 # 1.3m @ 6A max flux; very bad res
#3914, 566.7, 64.22, 50, 50.8, 6, 0.124 # sasview dataloader test jan08002.abs
#3914, 1000, 64.22, 50, 0, 6, 0.124 # sasview dataloader test jan08002.abs
)
# Parameters from NCNR VAX format files
# resolution.ap12dis*1000, det.dis*1000
# resolution.ap1, resolution.ap2
# det.bstop
# resolution.lmda, resolution.dlmda
geom = dict(zip(fields, values))
#geom['Iq'] = lambda q: 1e-7*q**-4 # Power law
geom['Iq'] = lambda q, r=80: sphere_form(q, r)
#geom['Iq'] = lambda q, r=8, D=2.5, xi=200.: sphere_form(q, r) * fractal(q, D, r, xi)
# ==== remove gravity
#geom["aligned_wavelength"] = geom["wavelength"] = 0.001
# ==== select precision
N = 10000000 # high precision
#N = 1000000 # mid precision
#N = 100000 # low precision
# ==== select detector portion
if 0:
# various detector regions
#i = j = np.arange(-63.5, 64) # full detector SLOW!!!
i = j = np.arange(-63.5, 64, 8) # down sampled
#i, j = np.arange(6, 64), [0] # horizontal line
#i, j = [0], np.arange(3.5, 64) # vertical line
#i, j = [6], [6] # low Q point
#i, j = [45], [45] # high Q point
plt.figure(); pinhole(i, j, N=N,
#pixel_width=0.5, pixel_height=0.5,
**geom)
else:
# variety of single point distributions
#geom['beamstop'] = 0.
# first pixel after the beam stop, assuming 5 mm per pixel
p_min = (geom['beamstop']+10)//10
plt.figure(); pinhole([p_min], [0], N=N, **geom)
#plt.figure(); pinhole([0], [0], N=N, **geom)
#plt.figure(); pinhole([1], [0], N=N, **geom)
#plt.figure(); pinhole([2], [0], N=N, **geom)
#plt.figure(); pinhole([3], [0], N=N, **geom)
#plt.figure(); pinhole([4], [0], N=N, **geom)
#plt.figure(); pinhole([6], [0], N=N, **geom)
#plt.figure(); pinhole([9], [0], N=N, **geom)
#plt.figure(); pinhole([10], [0], N=N, **geom)
#plt.figure(); pinhole([20], [0], N=N, **geom)
#plt.figure(); pinhole([40], [0], N=N, **geom)
#plt.figure(); pinhole([60], [0], N=N, **geom)
#plt.figure(); pinhole([0], [p_min], N=N, **geom)
#plt.figure(); pinhole([0], [20], N=N, **geom)
#plt.figure(); pinhole([0], [60], N=N, **geom)
#plt.figure(); pinhole([0], [-60], N=N, **geom)
plt.show()