This is the full API documentation of the imbalanced-learn toolbox.
:mod:`imblearn.under_sampling`: Under-sampling methods
.. automodule:: imblearn.under_sampling :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. automodule:: imblearn.under_sampling._prototype_generation :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst under_sampling.ClusterCentroids
.. automodule:: imblearn.under_sampling._prototype_selection :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst under_sampling.CondensedNearestNeighbour under_sampling.EditedNearestNeighbours under_sampling.RepeatedEditedNearestNeighbours under_sampling.AllKNN under_sampling.InstanceHardnessThreshold under_sampling.NearMiss under_sampling.NeighbourhoodCleaningRule under_sampling.OneSidedSelection under_sampling.RandomUnderSampler under_sampling.TomekLinks
:mod:`imblearn.over_sampling`: Over-sampling methods
.. automodule:: imblearn.over_sampling :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst over_sampling.ADASYN over_sampling.BorderlineSMOTE over_sampling.KMeansSMOTE over_sampling.RandomOverSampler over_sampling.SMOTE over_sampling.SMOTENC over_sampling.SVMSMOTE over_sampling.ROSE
:mod:`imblearn.combine`: Combination of over- and under-sampling methods
.. automodule:: imblearn.combine :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst combine.SMOTEENN combine.SMOTETomek
:mod:`imblearn.ensemble`: Ensemble methods
.. automodule:: imblearn.ensemble :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst ensemble.BalancedBaggingClassifier ensemble.BalancedRandomForestClassifier ensemble.EasyEnsembleClassifier ensemble.RUSBoostClassifier
:mod:`imblearn.keras`: Batch generator for Keras
.. automodule:: imblearn.keras :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst keras.BalancedBatchGenerator
.. autosummary:: :toctree: generated/ :template: function.rst keras.balanced_batch_generator
:mod:`imblearn.tensorflow`: Batch generator for TensorFlow
.. automodule:: imblearn.tensorflow :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: function.rst tensorflow.balanced_batch_generator
Imbalance-learn provides some fast-prototyping tools.
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst FunctionSampler
:mod:`imblearn.pipeline`: Pipeline
.. automodule:: imblearn.pipeline :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: class.rst pipeline.Pipeline
.. autosummary:: :toctree: generated/ :template: function.rst pipeline.make_pipeline
:mod:`imblearn.metrics`: Metrics
.. automodule:: imblearn.metrics :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: function.rst metrics.classification_report_imbalanced metrics.sensitivity_specificity_support metrics.sensitivity_score metrics.specificity_score metrics.geometric_mean_score metrics.make_index_balanced_accuracy
:mod:`imblearn.datasets`: Datasets
.. automodule:: imblearn.datasets :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: function.rst datasets.make_imbalance datasets.fetch_datasets
:mod:`imblearn.utils`: Utilities
.. automodule:: imblearn.utils :no-members: :no-inherited-members:
.. currentmodule:: imblearn
.. autosummary:: :toctree: generated/ :template: function.rst utils.check_neighbors_object utils.check_sampling_strategy utils.get_classes_counts