-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path_bagging.py
297 lines (241 loc) · 9.91 KB
/
_bagging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""Bagging classifier trained on balanced bootstrap samples."""
# Authors: Guillaume Lemaitre <[email protected]>
# Christos Aridas
# License: MIT
import numbers
import numpy as np
from sklearn.base import clone
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from ..pipeline import Pipeline
from ..under_sampling import RandomUnderSampler
from ..under_sampling.base import BaseUnderSampler
from ..utils import Substitution, check_target_type, check_sampling_strategy
from ..utils._docstring import _n_jobs_docstring
from ..utils._docstring import _random_state_docstring
from ..utils._validation import (
_deprecate_positional_args,
get_classes_counts,
)
@Substitution(
sampling_strategy=BaseUnderSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class BalancedBaggingClassifier(BaggingClassifier):
"""A Bagging classifier with additional balancing.
This implementation of Bagging is similar to the scikit-learn
implementation. It includes an additional step to balance the training set
at fit time using a ``RandomUnderSampler``.
Read more in the :ref:`User Guide <bagging>`.
Parameters
----------
base_estimator : estimator object, default=None
The base estimator to fit on random subsets of the dataset.
If None, then the base estimator is a decision tree.
n_estimators : int, default=10
The number of base estimators in the ensemble.
max_samples : int or float, default=1.0
The number of samples to draw from X to train each base estimator.
- If int, then draw ``max_samples`` samples.
- If float, then draw ``max_samples * X.shape[0]`` samples.
max_features : int or float, default=1.0
The number of features to draw from X to train each base estimator.
- If int, then draw ``max_features`` features.
- If float, then draw ``max_features * X.shape[1]`` features.
bootstrap : bool, default=True
Whether samples are drawn with replacement.
bootstrap_features : bool, default=False
Whether features are drawn with replacement.
oob_score : bool, default=False
Whether to use out-of-bag samples to estimate
the generalization error.
warm_start : bool, default=False
When set to True, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit
a whole new ensemble.
{sampling_strategy}
replacement : bool, default=False
Whether or not to sample randomly with replacement or not.
{n_jobs}
{random_state}
verbose : int, default=0
Controls the verbosity of the building process.
Attributes
----------
base_estimator_ : estimator
The base estimator from which the ensemble is grown.
n_features_ : int
The number of features when `fit` is performed.
estimators_ : list of estimators
The collection of fitted base estimators.
estimators_samples_ : list of ndarray
The subset of drawn samples (i.e., the in-bag samples) for each base
estimator. Each subset is defined by a boolean mask.
estimators_features_ : list of ndarray
The subset of drawn features for each base estimator.
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_classes_ : int or list
The number of classes.
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_ : ndarray of shape (n_samples, n_classes)
Decision function computed with out-of-bag estimate on the training
set. If n_estimators is small it might be possible that a data point
was never left out during the bootstrap. In this case,
``oob_decision_function_`` might contain NaN.
See Also
--------
BalancedRandomForestClassifier : Random forest applying random-under
sampling to balance the different bootstraps.
EasyEnsembleClassifier : Ensemble of AdaBoost classifier trained on
balanced bootstraps.
RUSBoostClassifier : AdaBoost classifier were each bootstrap is balanced
using random-under sampling at each round of boosting.
Notes
-----
This is possible to turn this classifier into a balanced random forest [5]_
by passing a :class:`~sklearn.tree.DecisionTreeClassifier` with
`max_features='auto'` as a base estimator.
See
:ref:`sphx_glr_auto_examples_ensemble_plot_comparison_ensemble_classifier.py`.
References
----------
.. [1] L. Breiman, "Pasting small votes for classification in large
databases and on-line", Machine Learning, 36(1), 85-103, 1999.
.. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
1996.
.. [3] T. Ho, "The random subspace method for constructing decision
forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
1998.
.. [4] G. Louppe and P. Geurts, "Ensembles on Random Patches", Machine
Learning and Knowledge Discovery in Databases, 346-361, 2012.
.. [5] Chen, Chao, Andy Liaw, and Leo Breiman. "Using random forest to
learn imbalanced data." University of California, Berkeley 110,
2004.
Examples
--------
>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import confusion_matrix
>>> from imblearn.ensemble import \
BalancedBaggingClassifier # doctest: +NORMALIZE_WHITESPACE
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape %s' % Counter(y))
Original dataset shape Counter({{1: 900, 0: 100}})
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=0)
>>> bbc = BalancedBaggingClassifier(random_state=42)
>>> bbc.fit(X_train, y_train) # doctest: +ELLIPSIS
BalancedBaggingClassifier(...)
>>> y_pred = bbc.predict(X_test)
>>> print(confusion_matrix(y_test, y_pred))
[[ 23 0]
[ 2 225]]
"""
@_deprecate_positional_args
def __init__(
self,
base_estimator=None,
n_estimators=10,
*,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
oob_score=False,
warm_start=False,
sampling_strategy="auto",
replacement=False,
n_jobs=None,
random_state=None,
verbose=0,
):
super().__init__(
base_estimator,
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
bootstrap=bootstrap,
bootstrap_features=bootstrap_features,
oob_score=oob_score,
warm_start=warm_start,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
)
self.sampling_strategy = sampling_strategy
self.replacement = replacement
def _validate_y(self, y):
y_encoded = super()._validate_y(y)
classes_counts = get_classes_counts(y)
if isinstance(self.sampling_strategy, dict):
self._sampling_strategy = {
np.where(self.classes_ == key)[0][0]: value
for key, value in check_sampling_strategy(
self.sampling_strategy, classes_counts, 'under-sampling',
).items()
}
else:
self._sampling_strategy = self.sampling_strategy
return y_encoded
def _validate_estimator(self, default=DecisionTreeClassifier()):
"""Check the estimator and the n_estimator attribute, set the
`base_estimator_` attribute."""
if not isinstance(self.n_estimators, (numbers.Integral, np.integer)):
raise ValueError(
"n_estimators must be an integer, "
"got {}.".format(type(self.n_estimators))
)
if self.n_estimators <= 0:
raise ValueError(
"n_estimators must be greater than zero, "
"got {}.".format(self.n_estimators)
)
if self.base_estimator is not None:
base_estimator = clone(self.base_estimator)
else:
base_estimator = clone(default)
self.base_estimator_ = Pipeline(
[
(
"sampler",
RandomUnderSampler(
sampling_strategy=self._sampling_strategy,
replacement=self.replacement,
),
),
("classifier", base_estimator),
]
)
def fit(self, X, y):
"""Build a Bagging ensemble of estimators from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples,)
The target values.
Returns
-------
self : object
Returns self.
"""
check_target_type(y)
# RandomUnderSampler is not supporting sample_weight. We need to pass
# None.
return self._fit(X, y, self.max_samples, sample_weight=None)
def _more_tags(self):
tags = super()._more_tags()
tags_key = "_xfail_checks"
failing_test = "check_estimators_nan_inf"
reason = "Fails because the sampler removed infinity and NaN values"
if tags_key in tags:
tags[tags_key][failing_test] = reason
else:
tags[tags_key] = {failing_test: reason}
return tags