-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path_forest.py
639 lines (531 loc) · 23.7 KB
/
_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"""Forest classifiers trained on balanced boostrasp samples."""
# Authors: Guillaume Lemaitre <[email protected]>
# License: MIT
import numbers
from warnings import warn
from copy import deepcopy
import numpy as np
from numpy import float32 as DTYPE
from numpy import float64 as DOUBLE
from scipy.sparse import issparse
from joblib import Parallel, delayed
from sklearn.base import clone
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble._base import _set_random_states
from sklearn.ensemble._forest import _get_n_samples_bootstrap
from sklearn.ensemble._forest import _parallel_build_trees
from sklearn.ensemble._forest import _generate_unsampled_indices
from sklearn.exceptions import DataConversionWarning
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import check_array
from sklearn.utils import check_random_state
from sklearn.utils import _safe_indexing
from sklearn.utils.validation import _check_sample_weight
from ..pipeline import make_pipeline
from ..under_sampling import RandomUnderSampler
from ..under_sampling.base import BaseUnderSampler
from ..utils import Substitution
from ..utils._docstring import _n_jobs_docstring
from ..utils._docstring import _random_state_docstring
from ..utils._validation import (
check_sampling_strategy,
_deprecate_positional_args,
get_classes_counts,
)
MAX_INT = np.iinfo(np.int32).max
def _local_parallel_build_trees(
sampler,
tree,
forest,
X,
y,
sample_weight,
tree_idx,
n_trees,
verbose=0,
class_weight=None,
n_samples_bootstrap=None
):
# resample before to fit the tree
X_resampled, y_resampled = sampler.fit_resample(X, y)
if sample_weight is not None:
sample_weight = _safe_indexing(sample_weight, sampler.sample_indices_)
if _get_n_samples_bootstrap is not None:
n_samples_bootstrap = min(n_samples_bootstrap, X_resampled.shape[0])
tree = _parallel_build_trees(
tree,
forest,
X_resampled,
y_resampled,
sample_weight,
tree_idx,
n_trees,
verbose=verbose,
class_weight=class_weight,
n_samples_bootstrap=n_samples_bootstrap,
)
return sampler, tree
@Substitution(
sampling_strategy=BaseUnderSampler._sampling_strategy_docstring,
n_jobs=_n_jobs_docstring,
random_state=_random_state_docstring,
)
class BalancedRandomForestClassifier(RandomForestClassifier):
"""A balanced random forest classifier.
A balanced random forest randomly under-samples each boostrap sample to
balance it.
Read more in the :ref:`User Guide <forest>`.
Parameters
----------
n_estimators : int, default=100
The number of trees in the forest.
criterion : {{"gini", "entropy"}}, default="gini"
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "entropy" for the information gain.
Note: this parameter is tree-specific.
max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node:
- If int, then consider ``min_samples_leaf`` as the minimum number.
- If float, then ``min_samples_leaf`` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
max_features : {{"auto", "sqrt", "log2"}}, int, float, or None, \
default="auto"
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a percentage and
`int(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=sqrt(n_features)`.
- If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
max_leaf_nodes : int, default=None
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
bootstrap : bool, default=True
Whether bootstrap samples are used when building trees.
oob_score : bool, default=False
Whether to use out-of-bag samples to estimate
the generalization accuracy.
{sampling_strategy}
replacement : bool, default=False
Whether or not to sample randomly with replacement or not.
{n_jobs}
{random_state}
verbose : int, default=0
Controls the verbosity of the tree building process.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.
class_weight : dict, list of dicts, {{"balanced", "balanced_subsample"}}, \
default=None
Weights associated with classes in the form dictionary with the key
being the class_label and the value the weight.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
Note that for multioutput (including multilabel) weights should be
defined for each class of every column in its own dict. For example,
for four-class multilabel classification weights should be
[{{0: 1, 1: 1}}, {{0: 1, 1: 5}}, {{0: 1, 1: 1}}, {{0: 1, 1: 1}}]
instead of [{{1:1}}, {{2:5}}, {{3:1}}, {{4:1}}].
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
The "balanced_subsample" mode is the same as "balanced" except that
weights are computed based on the bootstrap sample for every tree
grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed
through the fit method) if sample_weight is specified.
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed.
.. versionadded:: 0.6
Added in `scikit-learn` in 0.22
max_samples : int or float, default=None
If bootstrap is True, the number of samples to draw from X
to train each base estimator.
- If None (default), then draw `X.shape[0]` samples.
- If int, then draw `max_samples` samples.
- If float, then draw `max_samples * X.shape[0]` samples. Thus,
`max_samples` should be in the interval `(0, 1)`.
Be aware that the final number samples used will be the minimum between
the number of samples given in `max_samples` and the number of samples
obtained after resampling.
.. versionadded:: 0.6
Added in `scikit-learn` in 0.22
Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
samplers_ : list of RandomUnderSampler
The collection of fitted samplers.
pipelines_ : list of Pipeline.
The collection of fitted pipelines (samplers + trees).
classes_ : ndarray of shape (n_classes,) or a list of such arrays
The classes labels (single output problem), or a list of arrays of
class labels (multi-output problem).
n_classes_ : int or list
The number of classes (single output problem), or a list containing the
number of classes for each output (multi-output problem).
n_features_ : int
The number of features when ``fit`` is performed.
n_outputs_ : int
The number of outputs when ``fit`` is performed.
feature_importances_ : ndarray of shape (n_features,)
The feature importances (the higher, the more important the feature).
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_ : ndarray of shape (n_samples, n_classes)
Decision function computed with out-of-bag estimate on the training
set. If n_estimators is small it might be possible that a data point
was never left out during the bootstrap. In this case,
`oob_decision_function_` might contain NaN.
See Also
--------
BalancedBaggingClassifier : Bagging classifier for which each base
estimator is trained on a balanced bootstrap.
EasyEnsembleClassifier : Ensemble of AdaBoost classifier trained on
balanced bootstraps.
RUSBoostClassifier : AdaBoost classifier were each bootstrap is balanced
using random-under sampling at each round of boosting.
References
----------
.. [1] Chen, Chao, Andy Liaw, and Leo Breiman. "Using random forest to
learn imbalanced data." University of California, Berkeley 110 (2004):
1-12.
Examples
--------
>>> from imblearn.ensemble import BalancedRandomForestClassifier
>>> from sklearn.datasets import make_classification
>>>
>>> X, y = make_classification(n_samples=1000, n_classes=3,
... n_informative=4, weights=[0.2, 0.3, 0.5],
... random_state=0)
>>> clf = BalancedRandomForestClassifier(max_depth=2, random_state=0)
>>> clf.fit(X, y) # doctest: +ELLIPSIS
BalancedRandomForestClassifier(...)
>>> print(clf.feature_importances_) # doctest: +ELLIPSIS
[...]
>>> print(clf.predict([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
... 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))
[1]
"""
@_deprecate_positional_args
def __init__(
self,
n_estimators=100,
*,
criterion="gini",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features="auto",
max_leaf_nodes=None,
min_impurity_decrease=0.0,
bootstrap=True,
oob_score=False,
sampling_strategy="auto",
replacement=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None,
ccp_alpha=0.0,
max_samples=None,
):
super().__init__(
criterion=criterion,
max_depth=max_depth,
n_estimators=n_estimators,
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
class_weight=class_weight,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
min_impurity_decrease=min_impurity_decrease,
ccp_alpha=ccp_alpha,
max_samples=max_samples,
)
self.sampling_strategy = sampling_strategy
self.replacement = replacement
def _validate_estimator(self, default=DecisionTreeClassifier()):
"""Check the estimator and the n_estimator attribute, set the
`base_estimator_` attribute."""
if not isinstance(self.n_estimators, (numbers.Integral, np.integer)):
raise ValueError(
"n_estimators must be an integer, "
"got {}.".format(type(self.n_estimators))
)
if self.n_estimators <= 0:
raise ValueError(
"n_estimators must be greater than zero, "
"got {}.".format(self.n_estimators)
)
if self.base_estimator is not None:
self.base_estimator_ = clone(self.base_estimator)
else:
self.base_estimator_ = clone(default)
self.base_sampler_ = RandomUnderSampler(
sampling_strategy=self._sampling_strategy,
replacement=self.replacement,
)
def _make_sampler_estimator(self, random_state=None):
"""Make and configure a copy of the `base_estimator_` attribute.
Warning: This method should be used to properly instantiate new
sub-estimators.
"""
estimator = clone(self.base_estimator_)
estimator.set_params(
**{p: getattr(self, p) for p in self.estimator_params}
)
sampler = clone(self.base_sampler_)
if random_state is not None:
_set_random_states(estimator, random_state)
_set_random_states(sampler, random_state)
return estimator, sampler
def fit(self, X, y, sample_weight=None):
"""Build a forest of trees from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Internally, its dtype will be converted
to ``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csc_matrix``.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples,)
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any
single class carrying a negative weight in either child node.
Returns
-------
self : object
The fitted instance.
"""
# Validate or convert input data
if issparse(y):
raise ValueError(
"sparse multilabel-indicator for y is not supported."
)
X, y = self._validate_data(X, y, multi_output=True,
accept_sparse="csc", dtype=DTYPE)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
# Remap output
_, self.n_features_ = X.shape
y = np.atleast_1d(y)
if y.ndim == 2 and y.shape[1] == 1:
warn(
"A column-vector y was passed when a 1d array was"
" expected. Please change the shape of y to "
"(n_samples,), for example using ravel().",
DataConversionWarning,
stacklevel=2,
)
if y.ndim == 1:
# reshape is necessary to preserve the data contiguity against vs
# [:, np.newaxis] that does not.
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
y_encoded, expanded_class_weight = self._validate_y_class_weight(y)
if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
y_encoded = np.ascontiguousarray(y_encoded, dtype=DOUBLE)
if isinstance(self.sampling_strategy, dict):
classes_counts = get_classes_counts(y)
self._sampling_strategy = {
np.where(self.classes_[0] == key)[0][0]: value
for key, value in check_sampling_strategy(
self.sampling_strategy, classes_counts, 'under-sampling',
).items()
}
else:
self._sampling_strategy = self.sampling_strategy
if expanded_class_weight is not None:
if sample_weight is not None:
sample_weight = sample_weight * expanded_class_weight
else:
sample_weight = expanded_class_weight
# Get bootstrap sample size
n_samples_bootstrap = _get_n_samples_bootstrap(
n_samples=X.shape[0],
max_samples=self.max_samples
)
# Check parameters
self._validate_estimator()
if not self.bootstrap and self.oob_score:
raise ValueError(
"Out of bag estimation only available" " if bootstrap=True"
)
random_state = check_random_state(self.random_state)
if not self.warm_start or not hasattr(self, "estimators_"):
# Free allocated memory, if any
self.estimators_ = []
self.samplers_ = []
self.pipelines_ = []
n_more_estimators = self.n_estimators - len(self.estimators_)
if n_more_estimators < 0:
raise ValueError(
"n_estimators=%d must be larger or equal to "
"len(estimators_)=%d when warm_start==True"
% (self.n_estimators, len(self.estimators_))
)
elif n_more_estimators == 0:
warn(
"Warm-start fitting without increasing n_estimators does not "
"fit new trees."
)
else:
if self.warm_start and len(self.estimators_) > 0:
# We draw from the random state to get the random state we
# would have got if we hadn't used a warm_start.
random_state.randint(MAX_INT, size=len(self.estimators_))
trees = []
samplers = []
for _ in range(n_more_estimators):
tree, sampler = self._make_sampler_estimator(
random_state=random_state
)
trees.append(tree)
samplers.append(sampler)
# Parallel loop: we prefer the threading backend as the Cython code
# for fitting the trees is internally releasing the Python GIL
# making threading more efficient than multiprocessing in
# that case. However, we respect any parallel_backend contexts set
# at a higher level, since correctness does not rely on using
# threads.
samplers_trees = Parallel(
n_jobs=self.n_jobs, verbose=self.verbose, prefer="threads"
)(
delayed(_local_parallel_build_trees)(
s,
t,
self,
X,
y_encoded,
sample_weight,
i,
len(trees),
verbose=self.verbose,
class_weight=self.class_weight,
n_samples_bootstrap=n_samples_bootstrap,
)
for i, (s, t) in enumerate(zip(samplers, trees))
)
samplers, trees = zip(*samplers_trees)
# Collect newly grown trees
self.estimators_.extend(trees)
self.samplers_.extend(samplers)
# Create pipeline with the fitted samplers and trees
self.pipelines_.extend(
[
make_pipeline(deepcopy(s), deepcopy(t))
for s, t in zip(samplers, trees)
]
)
if self.oob_score:
self._set_oob_score(X, y_encoded)
# Decapsulate classes_ attributes
if hasattr(self, "classes_") and self.n_outputs_ == 1:
self.n_classes_ = self.n_classes_[0]
self.classes_ = self.classes_[0]
return self
def _set_oob_score(self, X, y):
"""Compute out-of-bag score."""
X = check_array(X, dtype=DTYPE, accept_sparse='csr')
n_classes_ = self.n_classes_
n_samples = y.shape[0]
oob_decision_function = []
oob_score = 0.0
predictions = [np.zeros((n_samples, n_classes_[k]))
for k in range(self.n_outputs_)]
for sampler, estimator in zip(self.samplers_, self.estimators_):
X_resample = X[sampler.sample_indices_]
y_resample = y[sampler.sample_indices_]
n_sample_subset = y_resample.shape[0]
n_samples_bootstrap = _get_n_samples_bootstrap(
n_sample_subset, self.max_samples
)
unsampled_indices = _generate_unsampled_indices(
estimator.random_state, n_sample_subset, n_samples_bootstrap
)
p_estimator = estimator.predict_proba(
X_resample[unsampled_indices, :], check_input=False
)
if self.n_outputs_ == 1:
p_estimator = [p_estimator]
for k in range(self.n_outputs_):
indices = sampler.sample_indices_[unsampled_indices]
predictions[k][indices, :] += p_estimator[k]
for k in range(self.n_outputs_):
if (predictions[k].sum(axis=1) == 0).any():
warn("Some inputs do not have OOB scores. "
"This probably means too few trees were used "
"to compute any reliable oob estimates.")
with np.errstate(invalid="ignore", divide="ignore"):
# with the resampling, we are likely to have rows not included
# for the OOB score leading to division by zero
decision = (predictions[k] /
predictions[k].sum(axis=1)[:, np.newaxis])
mask_scores = np.isnan(np.sum(decision, axis=1))
oob_decision_function.append(decision)
oob_score += np.mean(
y[~mask_scores, k] == np.argmax(predictions[k][~mask_scores],
axis=1),
axis=0)
if self.n_outputs_ == 1:
self.oob_decision_function_ = oob_decision_function[0]
else:
self.oob_decision_function_ = oob_decision_function
self.oob_score_ = oob_score / self.n_outputs_
def _more_tags(self):
return {"multioutput": False}