-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathplot_geometric_smote_generation_mechanism.py
211 lines (179 loc) · 8.18 KB
/
plot_geometric_smote_generation_mechanism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
=========================
Data generation mechanism
=========================
This example illustrates the Geometric SMOTE data
generation mechanism and the usage of its
hyperparameters.
"""
# Author: Georgios Douzas <[email protected]>
# Licence: MIT
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from imblearn.over_sampling import SMOTE, GeometricSMOTE
print(__doc__)
XLIM, YLIM = [-3.0, 3.0], [0.0, 4.0]
RANDOM_STATE = 5
def generate_imbalanced_data(
n_maj_samples, n_min_samples, centers, cluster_std, *min_point
):
"""Generate imbalanced data."""
X_neg, _ = make_blobs(
n_samples=n_maj_samples,
centers=centers,
cluster_std=cluster_std,
random_state=RANDOM_STATE,
)
X_pos = np.array(min_point)
X = np.vstack([X_neg, X_pos])
y_pos = np.zeros(X_neg.shape[0], dtype=np.int8)
y_neg = np.ones(n_min_samples, dtype=np.int8)
y = np.hstack([y_pos, y_neg])
return X, y
def plot_scatter(X, y, title):
"""Function to plot some data as a scatter plot."""
plt.figure()
plt.scatter(X[y == 1, 0], X[y == 1, 1], label="Positive Class")
plt.scatter(X[y == 0, 0], X[y == 0, 1], label="Negative Class")
plt.xlim(*XLIM)
plt.ylim(*YLIM)
plt.gca().set_aspect("equal", adjustable="box")
plt.legend()
plt.title(title)
def plot_hyperparameters(oversampler, X, y, param, vals, n_subplots):
"""Function to plot resampled data for various
values of a geometric hyperparameter."""
n_rows = n_subplots[0]
fig, ax_arr = plt.subplots(*n_subplots, figsize=(15, 7 if n_rows > 1 else 3.5))
if n_rows > 1:
ax_arr = [ax for axs in ax_arr for ax in axs]
for ax, val in zip(ax_arr, vals):
oversampler.set_params(**{param: val})
X_res, y_res = oversampler.fit_resample(X, y)
ax.scatter(X_res[y_res == 1, 0], X_res[y_res == 1, 1], label="Positive Class")
ax.scatter(X_res[y_res == 0, 0], X_res[y_res == 0, 1], label="Negative Class")
ax.set_title(f"{val}")
ax.set_xlim(*XLIM)
ax.set_ylim(*YLIM)
def plot_comparison(oversamplers, X, y):
"""Function to compare SMOTE and Geometric SMOTE
generation of noisy samples."""
fig, ax_arr = plt.subplots(1, 2, figsize=(15, 5))
for ax, (name, ovs) in zip(ax_arr, oversamplers):
X_res, y_res = ovs.fit_resample(X, y)
ax.scatter(X_res[y_res == 1, 0], X_res[y_res == 1, 1], label="Positive Class")
ax.scatter(X_res[y_res == 0, 0], X_res[y_res == 0, 1], label="Negative Class")
ax.set_title(name)
ax.set_xlim(*XLIM)
ax.set_ylim(*YLIM)
###############################################################################
# Generate imbalanced data
###############################################################################
###############################################################################
# We are generating a highly imbalanced non Gaussian data set. Only two samples
# from the minority (positive) class are included to illustrate the Geometric
# SMOTE data generation mechanism.
X, y = generate_imbalanced_data(
200, 2, [(-2.0, 2.25), (1.0, 2.0)], 0.25, [-0.7, 2.3], [-0.5, 3.1]
)
plot_scatter(X, y, "Imbalanced data")
###############################################################################
# Geometric hyperparameters
###############################################################################
###############################################################################
# Similarly to SMOTE and its variations, Geometric SMOTE uses the `k_neighbors`
# hyperparameter to select a random neighbor among the k nearest neighbors of a
# minority class instance. On the other hand, Geometric SMOTE expands the data
# generation area from the line segment of the SMOTE mechanism to a hypersphere
# that can be truncated and deformed. The characteristics of the above geometric
# area are determined by the hyperparameters ``truncation_factor``,
# ``deformation_factor`` and ``selection_strategy``. These are called geometric
# hyperparameters and allow the generation of diverse synthetic data as shown
# below.
###############################################################################
# Truncation factor
# ..............................................................................
#
# The hyperparameter ``truncation_factor`` determines the degree of truncation
# that is applied on the initial geometric area. Selecting the values of
# geometric hyperparameters as `truncation_factor=0.0`,
# ``deformation_factor=0.0`` and ``selection_strategy='minority'``, the data
# generation area in 2D corresponds to a circle with center as one of the two
# minority class samples and radius equal to the distance between them. In the
# multi-dimensional case the corresponding area is a hypersphere. When
# truncation factor is increased, the hypersphere is truncated and for
# ``truncation_factor=1.0`` becomes a half-hypersphere. Negative values of
# ``truncation_factor`` have a similar effect but on the opposite direction.
gsmote = GeometricSMOTE(
k_neighbors=1,
deformation_factor=0.0,
selection_strategy="minority",
random_state=RANDOM_STATE,
)
truncation_factors = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
n_subplots = [2, 3]
plot_hyperparameters(gsmote, X, y, "truncation_factor", truncation_factors, n_subplots)
plot_hyperparameters(gsmote, X, y, "truncation_factor", -truncation_factors, n_subplots)
###############################################################################
# Deformation factor
# ..............................................................................
#
# When the ``deformation_factor`` is increased, the data generation area deforms
# to an ellipsis and for ``deformation_factor=1.0`` becomes a line segment.
gsmote = GeometricSMOTE(
k_neighbors=1,
truncation_factor=0.0,
selection_strategy="minority",
random_state=RANDOM_STATE,
)
deformation_factors = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0])
n_subplots = [2, 3]
plot_hyperparameters(gsmote, X, y, "deformation_factor", truncation_factors, n_subplots)
###############################################################################
# Selection strategy
# ..............................................................................
#
# The hyperparameter ``selection_strategy`` determines the selection mechanism
# of nearest neighbors. Initially, a minority class sample is selected randomly.
# When ``selection_strategy='minority'``, a second minority class sample is
# selected as one of the k nearest neighbors of it. For
# ``selection_strategy='majority'``, the second sample is its nearest majority
# class neighbor. Finally, for ``selection_strategy='combined'`` the two
# selection mechanisms are combined and the second sample is the nearest to the
# first between the two samples defined above.
gsmote = GeometricSMOTE(
k_neighbors=1,
truncation_factor=0.0,
deformation_factor=0.5,
random_state=RANDOM_STATE,
)
selection_strategies = np.array(["minority", "majority", "combined"])
n_subplots = [1, 3]
plot_hyperparameters(
gsmote, X, y, "selection_strategy", selection_strategies, n_subplots
)
###############################################################################
# Noisy samples
###############################################################################
###############################################################################
# We are adding a third minority class sample to illustrate the difference
# between SMOTE and Geometric SMOTE data generation mechanisms.
X_new = np.vstack([X, np.array([2.0, 2.0])])
y_new = np.hstack([y, np.ones(1, dtype=np.int8)])
plot_scatter(X_new, y_new, "Imbalanced data")
###############################################################################
# When the number of ``k_neighbors`` is increased, SMOTE results to the
# generation of noisy samples. On the other hand, Geometric SMOTE avoids this
# scenario when the ``selection_strategy`` values are either ``combined`` or
# ``majority``.
oversamplers = [
("SMOTE", SMOTE(k_neighbors=2, random_state=RANDOM_STATE)),
(
"Geometric SMOTE",
GeometricSMOTE(
k_neighbors=2, selection_strategy="combined", random_state=RANDOM_STATE
),
),
]
plot_comparison(oversamplers, X_new, y_new)