@@ -437,10 +437,10 @@ def __init__(
437437        max_features = "sqrt" ,
438438        max_leaf_nodes = None ,
439439        min_impurity_decrease = 0.0 ,
440-         bootstrap = "warn" ,
440+         bootstrap = False ,
441441        oob_score = False ,
442-         sampling_strategy = "warn " ,
443-         replacement = "warn" ,
442+         sampling_strategy = "all " ,
443+         replacement = True ,
444444        n_jobs = None ,
445445        random_state = None ,
446446        verbose = 0 ,
@@ -498,7 +498,7 @@ def _validate_estimator(self, default=DecisionTreeClassifier()):
498498
499499        self .base_sampler_  =  RandomUnderSampler (
500500            sampling_strategy = self ._sampling_strategy ,
501-             replacement = self ._replacement ,
501+             replacement = self .replacement ,
502502        )
503503
504504    def  _make_sampler_estimator (self , random_state = None ):
@@ -544,49 +544,6 @@ def fit(self, X, y, sample_weight=None):
544544            The fitted instance. 
545545        """ 
546546        self ._validate_params ()
547-         # TODO: remove in 0.13 
548-         if  self .sampling_strategy  ==  "warn" :
549-             warn (
550-                 (
551-                     "The default of `sampling_strategy` will change from `'auto'` to" 
552-                     " `'all'` in version 0.13. This change will follow the" 
553-                     " implementation proposed in the original paper. Set to `'all'` to" 
554-                     " silence this warning and adopt the future behaviour." 
555-                 ),
556-                 FutureWarning ,
557-             )
558-             self ._sampling_strategy  =  "auto" 
559-         else :
560-             self ._sampling_strategy  =  self .sampling_strategy 
561- 
562-         if  self .replacement  ==  "warn" :
563-             warn (
564-                 (
565-                     "The default of `replacement` will change from `False` to `True` in" 
566-                     " version 0.13. This change will follow the implementation proposed" 
567-                     " in the original paper. Set to `True` to silence this warning and" 
568-                     " adopt the future behaviour." 
569-                 ),
570-                 FutureWarning ,
571-             )
572-             self ._replacement  =  False 
573-         else :
574-             self ._replacement  =  self .replacement 
575- 
576-         if  self .bootstrap  ==  "warn" :
577-             warn (
578-                 (
579-                     "The default of `bootstrap` will change from `True` to `False` in" 
580-                     " version 0.13. This change will follow the implementation proposed" 
581-                     " in the original paper. Set to `False` to silence this warning and" 
582-                     " adopt the future behaviour." 
583-                 ),
584-                 FutureWarning ,
585-             )
586-             self ._bootstrap  =  True 
587-         else :
588-             self ._bootstrap  =  self .bootstrap 
589- 
590547        # Validate or convert input data 
591548        if  issparse (y ):
592549            raise  ValueError ("sparse multilabel-indicator for y is not supported." )
@@ -657,7 +614,7 @@ def fit(self, X, y, sample_weight=None):
657614        if  getattr (y , "dtype" , None ) !=  DOUBLE  or  not  y .flags .contiguous :
658615            y_encoded  =  np .ascontiguousarray (y_encoded , dtype = DOUBLE )
659616
660-         if  isinstance (self ._sampling_strategy , dict ):
617+         if  isinstance (self .sampling_strategy , dict ):
661618            self ._sampling_strategy  =  {
662619                np .where (self .classes_ [0 ] ==  key )[0 ][0 ]: value 
663620                for  key , value  in  check_sampling_strategy (
@@ -667,7 +624,7 @@ def fit(self, X, y, sample_weight=None):
667624                ).items ()
668625            }
669626        else :
670-             self ._sampling_strategy  =  self ._sampling_strategy 
627+             self ._sampling_strategy  =  self .sampling_strategy 
671628
672629        if  expanded_class_weight  is  not   None :
673630            if  sample_weight  is  not   None :
@@ -683,7 +640,7 @@ def fit(self, X, y, sample_weight=None):
683640        # Check parameters 
684641        self ._validate_estimator ()
685642
686-         if  not  self ._bootstrap  and  self .oob_score :
643+         if  not  self .bootstrap  and  self .oob_score :
687644            raise  ValueError ("Out of bag estimation only available if bootstrap=True" )
688645
689646        random_state  =  check_random_state (self .random_state )
@@ -735,7 +692,7 @@ def fit(self, X, y, sample_weight=None):
735692                delayed (_local_parallel_build_trees )(
736693                    s ,
737694                    t ,
738-                     self ._bootstrap ,
695+                     self .bootstrap ,
739696                    X ,
740697                    y_encoded ,
741698                    sample_weight ,
0 commit comments