24
24
from sklearn .exceptions import NotFittedError
25
25
from sklearn .utils .testing import assert_allclose
26
26
from sklearn .utils .testing import set_random_state
27
- from sklearn .externals .funcsigs import signature
28
27
29
28
from imblearn .base import SamplerMixin
30
29
from imblearn .over_sampling .base import BaseOverSampler
@@ -211,12 +210,10 @@ def check_samplers_sparse(name, Sampler):
211
210
estimator = KMeans (random_state = 1 ,
212
211
algorithm = 'full' ))]
213
212
else :
214
- sampler_attr = signature (Sampler .__init__ ).parameters .keys ()
215
- if 'random_state' in sampler_attr :
216
- samplers = [Sampler (random_state = 0 )]
217
- else :
218
- samplers = [Sampler ()]
213
+ samplers = [Sampler ()]
214
+
219
215
for sampler in samplers :
216
+ set_random_state (sampler )
220
217
X_res_sparse , y_res_sparse = sampler .fit_sample (X_sparse , y )
221
218
X_res , y_res = sampler .fit_sample (X , y )
222
219
if not isinstance (sampler , BaseEnsembleSampler ):
@@ -243,16 +240,16 @@ def check_samplers_pandas(name, Sampler):
243
240
samplers = [Sampler (random_state = 0 , kind = kind )
244
241
for kind in ('regular' , 'borderline1' ,
245
242
'borderline2' , 'svm' )]
243
+
246
244
elif isinstance (Sampler (), NearMiss ):
247
- samplers = [Sampler (version = version )
248
- for version in (1 , 2 , 3 )]
245
+ samplers = [Sampler (version = version )
246
+ for version in (1 , 2 , 3 )]
247
+
249
248
else :
250
- sampler_attr = signature (Sampler .__init__ ).parameters .keys ()
251
- if 'random_state' in sampler_attr :
252
- samplers = [Sampler (random_state = 0 )]
253
- else :
254
- samplers = [Sampler ()]
249
+ samplers = [Sampler ()]
250
+
255
251
for sampler in samplers :
252
+ set_random_state (sampler )
256
253
X_res_pd , y_res_pd = sampler .fit_sample (X_pd , y_pd )
257
254
X_res , y_res = sampler .fit_sample (X , y )
258
255
assert_allclose (X_res_pd , X_res )
0 commit comments