|
| 1 | +""" |
| 2 | +Test the geometric_smote module. |
| 3 | +""" |
| 4 | + |
| 5 | +from collections import Counter |
| 6 | + |
| 7 | +import pytest |
| 8 | +import numpy as np |
| 9 | +from numpy.linalg import norm |
| 10 | +from sklearn.utils import check_random_state |
| 11 | +from sklearn.datasets import make_classification |
| 12 | + |
| 13 | +from ..geometric import _make_geometric_sample, GeometricSMOTE, SELECTION_STRATEGY |
| 14 | + |
| 15 | +RND_SEED = 0 |
| 16 | +RANDOM_STATE = check_random_state(RND_SEED) |
| 17 | +CENTERS = [ |
| 18 | + RANDOM_STATE.random_sample((2,)), |
| 19 | + 2.6 * RANDOM_STATE.random_sample((4,)), |
| 20 | + 3.2 * RANDOM_STATE.random_sample((10,)), |
| 21 | + -0.5 * RANDOM_STATE.random_sample((1,)), |
| 22 | +] |
| 23 | +SURFACE_POINTS = [ |
| 24 | + RANDOM_STATE.random_sample((2,)), |
| 25 | + 5.2 * RANDOM_STATE.random_sample((4,)), |
| 26 | + -3.5 * RANDOM_STATE.random_sample((10,)), |
| 27 | + -10.9 * RANDOM_STATE.random_sample((1,)), |
| 28 | +] |
| 29 | +TRUNCATION_FACTORS = [-1.0, -0.5, 0.0, 0.5, 1.0] |
| 30 | +DEFORMATION_FACTORS = [0.0, 0.25, 0.5, 0.75, 1.0] |
| 31 | + |
| 32 | + |
| 33 | +@pytest.mark.parametrize( |
| 34 | + 'center,surface_point', |
| 35 | + [ |
| 36 | + (CENTERS[0], SURFACE_POINTS[0]), |
| 37 | + (CENTERS[1], SURFACE_POINTS[1]), |
| 38 | + (CENTERS[2], SURFACE_POINTS[2]), |
| 39 | + (CENTERS[3], SURFACE_POINTS[3]), |
| 40 | + ], |
| 41 | +) |
| 42 | +def test_make_geometric_sample_hypersphere(center, surface_point): |
| 43 | + """Test the generation of points inside a hypersphere.""" |
| 44 | + point = _make_geometric_sample(center, surface_point, 0.0, 0.0, RANDOM_STATE) |
| 45 | + rel_point = point - center |
| 46 | + rel_surface_point = surface_point - center |
| 47 | + np.testing.assert_array_less(0.0, norm(rel_surface_point) - norm(rel_point)) |
| 48 | + |
| 49 | + |
| 50 | +@pytest.mark.parametrize( |
| 51 | + 'surface_point,deformation_factor', |
| 52 | + [ |
| 53 | + (np.array([1.0, 0.0]), 0.0), |
| 54 | + (2.6 * np.array([0.0, 1.0]), 0.25), |
| 55 | + (3.2 * np.array([0.0, 1.0, 0.0, 0.0]), 0.50), |
| 56 | + (0.5 * np.array([0.0, 0.0, 1.0]), 0.75), |
| 57 | + (6.7 * np.array([0.0, 0.0, 1.0, 0.0, 0.0]), 1.0), |
| 58 | + ], |
| 59 | +) |
| 60 | +def test_make_geometric_sample_half_hypersphere(surface_point, deformation_factor): |
| 61 | + """Test the generation of points inside a hypersphere.""" |
| 62 | + center = np.zeros(surface_point.shape) |
| 63 | + point = _make_geometric_sample( |
| 64 | + center, surface_point, 1.0, deformation_factor, RANDOM_STATE |
| 65 | + ) |
| 66 | + np.testing.assert_array_less(0.0, norm(surface_point) - norm(point)) |
| 67 | + np.testing.assert_array_less(0.0, np.dot(point, surface_point)) |
| 68 | + |
| 69 | + |
| 70 | +@pytest.mark.parametrize( |
| 71 | + 'center,surface_point,truncation_factor', |
| 72 | + [ |
| 73 | + (center, surface_point, truncation_factor) |
| 74 | + for center, surface_point in zip(CENTERS, SURFACE_POINTS) |
| 75 | + for truncation_factor in TRUNCATION_FACTORS |
| 76 | + ], |
| 77 | +) |
| 78 | +def test_make_geometric_sample_line_segment(center, surface_point, truncation_factor): |
| 79 | + """Test the generation of points on a line segment.""" |
| 80 | + point = _make_geometric_sample( |
| 81 | + center, surface_point, truncation_factor, 1.0, RANDOM_STATE |
| 82 | + ) |
| 83 | + rel_point = point - center |
| 84 | + rel_surface_point = surface_point - center |
| 85 | + dot_product = np.dot(rel_point, rel_surface_point) |
| 86 | + norms_product = norm(rel_point) * norm(rel_surface_point) |
| 87 | + np.testing.assert_array_less(0.0, norm(rel_surface_point) - norm(rel_point)) |
| 88 | + dot_product = ( |
| 89 | + np.abs(dot_product) if truncation_factor == 0.0 else (-1) * dot_product |
| 90 | + ) |
| 91 | + np.testing.assert_allclose(np.abs(dot_product) / norms_product, 1.0) |
| 92 | + |
| 93 | + |
| 94 | +def test_gsmote_default_init(): |
| 95 | + """Test the intialization with default parameters.""" |
| 96 | + gsmote = GeometricSMOTE() |
| 97 | + assert gsmote.sampling_strategy == 'auto' |
| 98 | + assert gsmote.random_state is None |
| 99 | + assert gsmote.truncation_factor == 1.0 |
| 100 | + assert gsmote.deformation_factor == 0.0 |
| 101 | + assert gsmote.selection_strategy == 'combined' |
| 102 | + assert gsmote.k_neighbors == 5 |
| 103 | + assert gsmote.n_jobs == 1 |
| 104 | + |
| 105 | + |
| 106 | +def test_gsmote_fit(): |
| 107 | + """Test fit method.""" |
| 108 | + n_samples, weights = 200, [0.6, 0.4] |
| 109 | + X, y = make_classification( |
| 110 | + random_state=RND_SEED, n_samples=n_samples, weights=weights |
| 111 | + ) |
| 112 | + gsmote = GeometricSMOTE(random_state=RANDOM_STATE).fit(X, y) |
| 113 | + assert gsmote.sampling_strategy_ == {1: 40} |
| 114 | + |
| 115 | + |
| 116 | +def test_gsmote_invalid_selection_strategy(): |
| 117 | + """Test invalid selection strategy.""" |
| 118 | + n_samples, weights = 200, [0.6, 0.4] |
| 119 | + X, y = make_classification( |
| 120 | + random_state=RND_SEED, n_samples=n_samples, weights=weights |
| 121 | + ) |
| 122 | + gsmote = GeometricSMOTE(random_state=RANDOM_STATE, selection_strategy='Minority') |
| 123 | + with pytest.raises(ValueError): |
| 124 | + gsmote.fit_resample(X, y) |
| 125 | + |
| 126 | + |
| 127 | +@pytest.mark.parametrize('selection_strategy', ['combined', 'minority', 'majority']) |
| 128 | +def test_gsmote_nn(selection_strategy): |
| 129 | + """Test nearest neighbors object.""" |
| 130 | + n_samples, weights = 200, [0.6, 0.4] |
| 131 | + X, y = make_classification( |
| 132 | + random_state=RND_SEED, n_samples=n_samples, weights=weights |
| 133 | + ) |
| 134 | + gsmote = GeometricSMOTE( |
| 135 | + random_state=RANDOM_STATE, selection_strategy=selection_strategy |
| 136 | + ) |
| 137 | + _ = gsmote.fit_resample(X, y) |
| 138 | + if selection_strategy in ('minority', 'combined'): |
| 139 | + assert gsmote.nns_pos_.n_neighbors == gsmote.k_neighbors + 1 |
| 140 | + if selection_strategy in ('majority', 'combined'): |
| 141 | + assert gsmote.nn_neg_.n_neighbors == 1 |
| 142 | + |
| 143 | + |
| 144 | +@pytest.mark.parametrize( |
| 145 | + 'selection_strategy, truncation_factor, deformation_factor', |
| 146 | + [ |
| 147 | + (selection_strategy, truncation_factor, deformation_factor) |
| 148 | + for selection_strategy in SELECTION_STRATEGY |
| 149 | + for truncation_factor in TRUNCATION_FACTORS |
| 150 | + for deformation_factor in DEFORMATION_FACTORS |
| 151 | + ], |
| 152 | +) |
| 153 | +def test_gsmote_fit_resample_binary( |
| 154 | + selection_strategy, truncation_factor, deformation_factor |
| 155 | +): |
| 156 | + """Test fit and sample for binary class case.""" |
| 157 | + n_maj, n_min, step, min_coor, max_coor = 12, 5, 0.5, 0.0, 8.5 |
| 158 | + X = np.repeat(np.arange(min_coor, max_coor, step), 2).reshape(-1, 2) |
| 159 | + y = np.concatenate([np.repeat(0, n_maj), np.repeat(1, n_min)]) |
| 160 | + radius = np.sqrt(0.5) * step |
| 161 | + k_neighbors = 1 |
| 162 | + gsmote = GeometricSMOTE( |
| 163 | + 'auto', |
| 164 | + RANDOM_STATE, |
| 165 | + truncation_factor, |
| 166 | + deformation_factor, |
| 167 | + selection_strategy, |
| 168 | + k_neighbors, |
| 169 | + ) |
| 170 | + X_resampled, y_resampled = gsmote.fit_resample(X, y) |
| 171 | + assert gsmote.sampling_strategy_ == {1: (n_maj - n_min)} |
| 172 | + assert y_resampled.sum() == n_maj |
| 173 | + np.testing.assert_array_less(X[n_maj - 1] - radius, X_resampled[n_maj + n_min]) |
| 174 | + |
| 175 | + |
| 176 | +@pytest.mark.parametrize( |
| 177 | + 'selection_strategy, truncation_factor, deformation_factor', |
| 178 | + [ |
| 179 | + (selection_strategy, truncation_factor, deformation_factor) |
| 180 | + for selection_strategy in SELECTION_STRATEGY |
| 181 | + for truncation_factor in TRUNCATION_FACTORS |
| 182 | + for deformation_factor in DEFORMATION_FACTORS |
| 183 | + ], |
| 184 | +) |
| 185 | +def test_gsmote_fit_resample_multiclass( |
| 186 | + selection_strategy, truncation_factor, deformation_factor |
| 187 | +): |
| 188 | + """Test fit and sample for multiclass case.""" |
| 189 | + n_samples, weights = 100, [0.75, 0.15, 0.10] |
| 190 | + X, y = make_classification( |
| 191 | + random_state=RND_SEED, |
| 192 | + n_samples=n_samples, |
| 193 | + weights=weights, |
| 194 | + n_classes=3, |
| 195 | + n_informative=5, |
| 196 | + ) |
| 197 | + k_neighbors, majority_label = 1, 0 |
| 198 | + gsmote = GeometricSMOTE( |
| 199 | + 'auto', |
| 200 | + RANDOM_STATE, |
| 201 | + truncation_factor, |
| 202 | + deformation_factor, |
| 203 | + selection_strategy, |
| 204 | + k_neighbors, |
| 205 | + ) |
| 206 | + _, y_resampled = gsmote.fit_resample(X, y) |
| 207 | + assert majority_label not in gsmote.sampling_strategy_.keys() |
| 208 | + np.testing.assert_array_equal(np.unique(y), np.unique(y_resampled)) |
| 209 | + assert len(set(Counter(y_resampled).values())) == 1 |
0 commit comments