24
24
from sklearn .exceptions import NotFittedError
25
25
from sklearn .utils .testing import assert_allclose
26
26
from sklearn .utils .testing import set_random_state
27
- from sklearn .externals .funcsigs import signature
28
27
29
28
from imblearn .base import SamplerMixin
30
29
from imblearn .over_sampling .base import BaseOverSampler
@@ -214,12 +213,10 @@ def check_samplers_sparse(name, Sampler):
214
213
estimator = KMeans (random_state = 1 ,
215
214
algorithm = 'full' ))]
216
215
else :
217
- sampler_attr = signature (Sampler .__init__ ).parameters .keys ()
218
- if 'random_state' in sampler_attr :
219
- samplers = [Sampler (random_state = 0 )]
220
- else :
221
- samplers = [Sampler ()]
216
+ samplers = [Sampler ()]
217
+
222
218
for sampler in samplers :
219
+ set_random_state (sampler )
223
220
X_res_sparse , y_res_sparse = sampler .fit_sample (X_sparse , y )
224
221
X_res , y_res = sampler .fit_sample (X , y )
225
222
if not isinstance (sampler , BaseEnsembleSampler ):
@@ -246,16 +243,16 @@ def check_samplers_pandas(name, Sampler):
246
243
samplers = [Sampler (random_state = 0 , kind = kind )
247
244
for kind in ('regular' , 'borderline1' ,
248
245
'borderline2' , 'svm' )]
246
+
249
247
elif isinstance (Sampler (), NearMiss ):
250
- samplers = [Sampler (version = version )
251
- for version in (1 , 2 , 3 )]
248
+ samplers = [Sampler (version = version )
249
+ for version in (1 , 2 , 3 )]
250
+
252
251
else :
253
- sampler_attr = signature (Sampler .__init__ ).parameters .keys ()
254
- if 'random_state' in sampler_attr :
255
- samplers = [Sampler (random_state = 0 )]
256
- else :
257
- samplers = [Sampler ()]
252
+ samplers = [Sampler ()]
253
+
258
254
for sampler in samplers :
255
+ set_random_state (sampler )
259
256
X_res_pd , y_res_pd = sampler .fit_sample (X_pd , y_pd )
260
257
X_res , y_res = sampler .fit_sample (X , y )
261
258
assert_allclose (X_res_pd , X_res )
0 commit comments