Skip to content

Commit edd7522

Browse files
authored
MNT remove deprecation warning in keras example (#775)
1 parent 6212fd2 commit edd7522

File tree

2 files changed

+29
-21
lines changed

2 files changed

+29
-21
lines changed

examples/applications/porto_seguro_keras_under_sampling.py

+9-5
Original file line numberDiff line numberDiff line change
@@ -89,9 +89,13 @@ def convert_float64(X):
8989
###############################################################################
9090
# Create a neural-network
9191
###############################################################################
92-
93-
from keras.models import Sequential
94-
from keras.layers import Activation, Dense, Dropout, BatchNormalization
92+
from tensorflow.keras.models import Sequential
93+
from tensorflow.keras.layers import (
94+
Activation,
95+
Dense,
96+
Dropout,
97+
BatchNormalization,
98+
)
9599

96100

97101
def make_model(n_features):
@@ -169,8 +173,8 @@ def fit_predict_balanced_model(X_train, y_train, X_test, y_test):
169173
training_generator = BalancedBatchGenerator(X_train, y_train,
170174
batch_size=1000,
171175
random_state=42)
172-
model.fit_generator(generator=training_generator, epochs=5, verbose=1)
173-
y_pred = model.predict_proba(X_test, batch_size=1000)
176+
model.fit(training_generator, epochs=5, verbose=1)
177+
y_pred = model.predict(X_test, batch_size=1000)
174178
return roc_auc_score(y_test, y_pred)
175179

176180

imblearn/keras/_generator.py

+20-16
Original file line numberDiff line numberDiff line change
@@ -112,19 +112,21 @@ class BalancedBatchGenerator(*ParentClass):
112112
>>> class_dict = dict()
113113
>>> class_dict[0] = 30; class_dict[1] = 50; class_dict[2] = 40
114114
>>> X, y = make_imbalance(iris.data, iris.target, class_dict)
115-
>>> import keras
116-
>>> y = keras.utils.to_categorical(y, 3)
117-
>>> model = keras.models.Sequential()
118-
>>> model.add(keras.layers.Dense(y.shape[1], input_dim=X.shape[1],
119-
... activation='softmax'))
115+
>>> import tensorflow
116+
>>> y = tensorflow.keras.utils.to_categorical(y, 3)
117+
>>> model = tensorflow.keras.models.Sequential()
118+
>>> model.add(
119+
... tensorflow.keras.layers.Dense(
120+
... y.shape[1], input_dim=X.shape[1], activation='softmax'
121+
... )
122+
... )
120123
>>> model.compile(optimizer='sgd', loss='categorical_crossentropy',
121124
... metrics=['accuracy'])
122125
>>> from imblearn.keras import BalancedBatchGenerator
123126
>>> from imblearn.under_sampling import NearMiss
124127
>>> training_generator = BalancedBatchGenerator(
125128
... X, y, sampler=NearMiss(), batch_size=10, random_state=42)
126-
>>> callback_history = model.fit_generator(generator=training_generator,
127-
... epochs=10, verbose=0)
129+
>>> callback_history = model.fit(training_generator, epochs=10, verbose=0)
128130
"""
129131

130132
# flag for keras sequence duck-typing
@@ -264,21 +266,23 @@ def balanced_batch_generator(
264266
>>> class_dict[0] = 30; class_dict[1] = 50; class_dict[2] = 40
265267
>>> from imblearn.datasets import make_imbalance
266268
>>> X, y = make_imbalance(X, y, class_dict)
267-
>>> import keras
268-
>>> y = keras.utils.to_categorical(y, 3)
269-
>>> model = keras.models.Sequential()
270-
>>> model.add(keras.layers.Dense(y.shape[1], input_dim=X.shape[1],
271-
... activation='softmax'))
269+
>>> import tensorflow
270+
>>> y = tensorflow.keras.utils.to_categorical(y, 3)
271+
>>> model = tensorflow.keras.models.Sequential()
272+
>>> model.add(
273+
... tensorflow.keras.layers.Dense(
274+
... y.shape[1], input_dim=X.shape[1], activation='softmax'
275+
... )
276+
... )
272277
>>> model.compile(optimizer='sgd', loss='categorical_crossentropy',
273278
... metrics=['accuracy'])
274279
>>> from imblearn.keras import balanced_batch_generator
275280
>>> from imblearn.under_sampling import NearMiss
276281
>>> training_generator, steps_per_epoch = balanced_batch_generator(
277282
... X, y, sampler=NearMiss(), batch_size=10, random_state=42)
278-
>>> callback_history = model.fit_generator(generator=training_generator,
279-
... steps_per_epoch=steps_per_epoch,
280-
... epochs=10, verbose=0)
281-
283+
>>> callback_history = model.fit(training_generator,
284+
... steps_per_epoch=steps_per_epoch,
285+
... epochs=10, verbose=0)
282286
"""
283287

284288
return tf_bbg(

0 commit comments

Comments
 (0)