@@ -42,25 +42,26 @@ def run_rnn_dbscan(neighbor_transformer, n_neighbors, **kwargs):
42
42
n_clusters_ = len (set (labels )) - (1 if - 1 in labels else 0 )
43
43
n_noise_ = list (labels ).count (- 1 )
44
44
45
- print ("Estimated number of clusters: %d" % n_clusters_ )
46
- print ("Estimated number of noise points: %d" % n_noise_ )
47
- print ("Homogeneity: %0.3f" % metrics .homogeneity_score (y , labels ))
48
- print ("Completeness: %0.3f" % metrics .completeness_score (y , labels ))
49
- print ("V-measure: %0.3f" % metrics .v_measure_score (y , labels ))
50
- print ("Adjusted Rand Index: %0.3f" % metrics .adjusted_rand_score (y , labels ))
51
- print (
52
- "Adjusted Mutual Information: %0.3f"
53
- % metrics .adjusted_mutual_info_score (y , labels )
54
- )
55
- print ("Silhouette Coefficient: %0.3f" % metrics .silhouette_score (X , labels ))
45
+ print (f"""\
46
+ Estimated number of clusters: { n_clusters_ }
47
+ Estimated number of noise points: { n_noise_ }
48
+ Homogeneity: { metrics .homogeneity_score (y , labels ):0.3f}
49
+ Completeness: { metrics .completeness_score (y , labels ):0.3f}
50
+ V-measure: { metrics .v_measure_score (y , labels ):0.3f}
51
+ Adjusted Rand Index: { metrics .adjusted_rand_score (y , labels ):0.3f}
52
+ Adjusted Mutual Information: { metrics .adjusted_mutual_info_score (y , labels ):0.3f}
53
+ Silhouette Coefficient: { metrics .silhouette_score (X , labels ):0.3f} \
54
+ """ )
56
55
57
56
58
57
if __name__ == "__main__" :
59
58
import code
60
59
61
- print ("Now you can import your chosen transformer_cls and run:" )
62
- print ("run_rnn_dbscan(transformer_cls, n_neighbors, **params)" )
63
- print ("e.g." )
64
- print ("from sklearn_ann.kneighbors.pynndescent import PyNNDescentTransformer" )
65
- print ("run_rnn_dbscan(PyNNDescentTransformer, 10)" )
60
+ print ("""\
61
+ Now you can import your chosen transformer_cls and run:
62
+ run_rnn_dbscan(transformer_cls, n_neighbors, **params)
63
+ e.g.
64
+ from sklearn_ann.kneighbors.pynndescent import PyNNDescentTransformer
65
+ run_rnn_dbscan(PyNNDescentTransformer, 10)\
66
+ """ )
66
67
code .interact (local = locals ())
0 commit comments