-
Notifications
You must be signed in to change notification settings - Fork 415
/
Copy pathdataframe_mapper_pipeline.py
76 lines (59 loc) · 2.35 KB
/
dataframe_mapper_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
'''
an alternative implementation which uses just sklearn Pipeline and FeatureUnion.
This makes the resultant transformer more compatible with other scikit-learn APIs.
'''
from sklearn.base import BaseEstimator, TransformerMixin
import pandas as pd
import numpy as np
from sklearn.pipeline import FeatureUnion
from .pipeline import TransformerPipeline
def _handle_feature(fea):
"""
Convert 1-dimensional arrays to 2-dimensional column vectors.
"""
if len(fea.shape) == 1:
fea = np.array([fea]).T
return fea
import unittest
class TestPipelineMapping(unittest.TestCase):
def setUp(self):
from sklearn.datasets import load_boston
data = load_boston()
fm = data['data']
y = data['target']
columns = data['feature_names']
df = pd.DataFrame(fm, columns=columns)
self.df = df
self.y = y
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
self.mapping = [(['AGE'], StandardScaler()),
(['RAD'], OneHotEncoder(handle_unknown="ignore"))
]
def test_make_pipe(self):
try:
pipeline = mapping_to_pipeline(mapping=self.mapping)
except Exception as e:
self.fail('Unexpected exception raised:', e)
self.assertTrue(isinstance(pipeline, FeatureUnion))
def test_transform(self):
pipeline = mapping_to_pipeline(mapping=self.mapping)
n_unique = self.df.apply(lambda x: x.nunique())
try:
transformed = pipeline.fit_transform(self.df)
except Exception as e:
self.fail('Unexpected exception raised:', e)
self.assertEqual(self.df.shape[0], transformed.shape[0])
self.assertEqual(n_unique['RAD'] + 1, transformed.shape[1])
def test_pipe_cv(self):
pipeline = mapping_to_pipeline(mapping=self.mapping)
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline, make_pipeline
full_pipeline = make_pipeline(pipeline, LinearRegression())
from sklearn.cross_validation import cross_val_score
try:
scores = cross_val_score(full_pipeline, self.df, self.y)
except Exception as e:
self.fail('Unexpected exception raised:', e)
if __name__ == '__main__':
unittest.main()