-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathtest.py
133 lines (115 loc) · 4.32 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import json
import os
from pathlib import Path
from cerberus import Validator as _Validator
import pytest
import g2
import pprint
pp = pprint.PrettyPrinter(indent=4)
# enable cache
g2.BASE_CONFIG["cache"] = True
class Validator(_Validator):
def _validate_min_presence(self, min_presence, field, value):
pass # required for adding non-standard keys to schema
def require_min_presence(items, key, min_perc=0.1):
"""check whether dataset contains items with some amount of non-null values for a given key"""
count = sum(1 for item in items if item.get(key))
if count < len(items) * min_perc:
pytest.fail(
f'inadequate presence of "{key}" field in dataset, only {count} out of {len(items)} items have it (expected {min_perc*100}%)'
)
def validate_or_fail(item, validator):
if not validator.validate(item):
pp.pformat(item)
pytest.fail(
f"Validation failed for item: {pp.pformat(item)}\nErrors: {validator.errors}"
)
review_schema = {
"author": {
"type": "dict",
"schema": {
"authorName": {"type": "string", "nullable": True},
"authorProfile": {"type": "string", "nullable": True},
"authorPosition": {"type": "string", "nullable": True},
},
},
"review": {
"type": "dict",
"schema": {
"reviewData": {"type": "string"},
"reviewRate": {"type": "float"},
"reviewTitle": {"type": "string"},
"reviewLikes": {"type": "string"},
"reviewDilikes": {"type": "string"},
},
},
}
search_schema = {
"name": {"type": "string"},
"link": {"type": "string"},
"image": {"type": "string", "nullable": True},
"rate": {"type": "float", "nullable": True},
"reviewsNumber": {"type": "integer", "nullable": True},
}
alternatives_schema = {
"name": {"type": "string"},
"link": {"type": "string"},
"ranking": {"type": "string"},
"numberOfReviews": {"type": "integer"},
"rate": {"type": "float"},
"description": {"type": "string"},
}
@pytest.mark.asyncio
async def test_review_scraping():
review_data = await g2.scrape_reviews(
url="https://www.g2.com/products/digitalocean/reviews", max_review_pages=2
)
validator = Validator(review_schema, allow_unknown=True)
for item in review_data:
validate_or_fail(item, validator)
for k in review_schema:
require_min_presence(
review_data, k, min_perc=review_schema[k].get("min_presence", 0.1)
)
assert len(review_data) >= 20
if os.getenv("SAVE_TEST_RESULTS") == "true":
review_data.sort(key=lambda x: x["review"]["reviewData"])
(Path(__file__).parent / 'results/reviews.json').write_text(
json.dumps(review_data, indent=2, ensure_ascii=False, default=str)
)
@pytest.mark.asyncio
async def test_search_scraping():
search_data = await g2.scrape_search(
url="https://www.g2.com/search?query=Infrastructure", max_scrape_pages=2
)
validator = Validator(search_schema, allow_unknown=True)
for item in search_data:
validate_or_fail(item, validator)
for k in search_schema:
require_min_presence(
search_data, k, min_perc=search_schema[k].get("min_presence", 0.1)
)
assert len(search_data) >= 20
if os.getenv("SAVE_TEST_RESULTS") == "true":
search_data.sort(key=lambda x: x["link"])
(Path(__file__).parent / 'results/search.json').write_text(
json.dumps(search_data, indent=2, ensure_ascii=False, default=str)
)
@pytest.mark.asyncio
async def test_alternative_scraping():
alternatives_data = await g2.scrape_alternatives(product="digitalocean")
validator = Validator(alternatives_schema, allow_unknown=True)
for item in alternatives_data:
validate_or_fail(item, validator)
for k in alternatives_schema:
require_min_presence(
alternatives_data,
k,
min_perc=alternatives_schema[k].get("min_presence", 0.1),
)
assert len(alternatives_data) == 10
if os.getenv("SAVE_TEST_RESULTS") == "true":
alternatives_data.sort(key=lambda x: x["link"])
(Path(__file__).parent / 'results/search.json').write_text(
json.dumps(alternatives_data, indent=2, ensure_ascii=False, default=str)
)