|
8 | 8 | import numpy as np
|
9 | 9 | import pandas as pd
|
10 | 10 | import scanpy as sc
|
| 11 | +import scipy |
11 | 12 | import seaborn as sns
|
12 | 13 | import statsmodels.formula.api as smf
|
13 | 14 | import statsmodels.stats.multitest as ssm
|
@@ -70,9 +71,9 @@ def _get_pseudobulks(
|
70 | 71 | for category in adata.obs.loc[:, groupby].cat.categories:
|
71 | 72 | temp = adata.obs.loc[:, groupby] == category
|
72 | 73 | if strategy == "median":
|
73 |
| - pseudobulk[category] = adata[temp].X.median(axis=0).A1 |
| 74 | + pseudobulk[category] = adata[temp].X.median(axis=0) |
74 | 75 | elif strategy == "mean":
|
75 |
| - pseudobulk[category] = adata[temp].X.mean(axis=0).A1 |
| 76 | + pseudobulk[category] = adata[temp].X.mean(axis=0) |
76 | 77 |
|
77 | 78 | pseudobulk = pd.DataFrame(pseudobulk).set_index("Genes")
|
78 | 79 |
|
@@ -517,8 +518,8 @@ def _pcor_mat(v1, v2, v3, method="spearman"):
|
517 | 518 | # TODO: probably format the up and down within get_top_elements
|
518 | 519 | cca_sig: dict[str, Any] = defaultdict(dict)
|
519 | 520 | for i in range(0, int(len(cca_sig_unformatted) / 2)):
|
520 |
| - cca_sig[f"MCP{i + 1}"]["up"] = cca_sig_unformatted[i * 2] |
521 |
| - cca_sig[f"MCP{i + 1}"]["down"] = cca_sig_unformatted[i * 2 + 1] |
| 521 | + cca_sig[f"MCP{i}"]["up"] = cca_sig_unformatted[i * 2] |
| 522 | + cca_sig[f"MCP{i}"]["down"] = cca_sig_unformatted[i * 2 + 1] |
522 | 523 |
|
523 | 524 | cca_sig = dict(cca_sig)
|
524 | 525 | cca_sig_results[ct] = cca_sig
|
@@ -710,7 +711,7 @@ def multilevel_modeling(
|
710 | 711 | formula = f"y ~ x + {self.n_counts_key}"
|
711 | 712 |
|
712 | 713 | # Hierarchical modeling expects DataFrames
|
713 |
| - mcp_cell_types = {f"MCP{i + 1}": cell_types for i in range(self.n_mcps)} |
| 714 | + mcp_cell_types = {f"MCP{i}": cell_types for i in range(self.n_mcps)} |
714 | 715 | mcp_scores_df = {
|
715 | 716 | ct: pd.DataFrame(v, index=ct_subs[ct].obs.index, columns=list(mcp_cell_types.keys()))
|
716 | 717 | for ct, v in mcp_scores.items()
|
@@ -1055,7 +1056,7 @@ def get_extrema_MCP_genes(self, ct_subs: dict, fraction: float = 0.1):
|
1055 | 1056 | rank_dfs[mcp] = {}
|
1056 | 1057 | ct_ranked = self._get_extrema_MCP_genes_single(ct_subs, mcp=mcp, fraction=fraction)
|
1057 | 1058 | for celltype in ct_ranked.keys():
|
1058 |
| - rank_dfs[mcp][celltype] = sc.get.rank_genes_groups_df(ct_ranked[celltype]) |
| 1059 | + rank_dfs[mcp][celltype] = sc.get.rank_genes_groups_df(ct_ranked[celltype], group=None) |
1059 | 1060 |
|
1060 | 1061 | return rank_dfs
|
1061 | 1062 |
|
|
0 commit comments