Skip to content

Commit 00052a4

Browse files
committed
Refactoring DIALOGUE
Signed-off-by: zethson <[email protected]>
1 parent 93e5db6 commit 00052a4

File tree

2 files changed

+8
-7
lines changed

2 files changed

+8
-7
lines changed

docs/tutorials/notebooks

pertpy/tools/_dialogue.py

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@
88
import numpy as np
99
import pandas as pd
1010
import scanpy as sc
11+
import scipy
1112
import seaborn as sns
1213
import statsmodels.formula.api as smf
1314
import statsmodels.stats.multitest as ssm
@@ -70,9 +71,9 @@ def _get_pseudobulks(
7071
for category in adata.obs.loc[:, groupby].cat.categories:
7172
temp = adata.obs.loc[:, groupby] == category
7273
if strategy == "median":
73-
pseudobulk[category] = adata[temp].X.median(axis=0).A1
74+
pseudobulk[category] = adata[temp].X.median(axis=0)
7475
elif strategy == "mean":
75-
pseudobulk[category] = adata[temp].X.mean(axis=0).A1
76+
pseudobulk[category] = adata[temp].X.mean(axis=0)
7677

7778
pseudobulk = pd.DataFrame(pseudobulk).set_index("Genes")
7879

@@ -517,8 +518,8 @@ def _pcor_mat(v1, v2, v3, method="spearman"):
517518
# TODO: probably format the up and down within get_top_elements
518519
cca_sig: dict[str, Any] = defaultdict(dict)
519520
for i in range(0, int(len(cca_sig_unformatted) / 2)):
520-
cca_sig[f"MCP{i + 1}"]["up"] = cca_sig_unformatted[i * 2]
521-
cca_sig[f"MCP{i + 1}"]["down"] = cca_sig_unformatted[i * 2 + 1]
521+
cca_sig[f"MCP{i}"]["up"] = cca_sig_unformatted[i * 2]
522+
cca_sig[f"MCP{i}"]["down"] = cca_sig_unformatted[i * 2 + 1]
522523

523524
cca_sig = dict(cca_sig)
524525
cca_sig_results[ct] = cca_sig
@@ -710,7 +711,7 @@ def multilevel_modeling(
710711
formula = f"y ~ x + {self.n_counts_key}"
711712

712713
# Hierarchical modeling expects DataFrames
713-
mcp_cell_types = {f"MCP{i + 1}": cell_types for i in range(self.n_mcps)}
714+
mcp_cell_types = {f"MCP{i}": cell_types for i in range(self.n_mcps)}
714715
mcp_scores_df = {
715716
ct: pd.DataFrame(v, index=ct_subs[ct].obs.index, columns=list(mcp_cell_types.keys()))
716717
for ct, v in mcp_scores.items()
@@ -1055,7 +1056,7 @@ def get_extrema_MCP_genes(self, ct_subs: dict, fraction: float = 0.1):
10551056
rank_dfs[mcp] = {}
10561057
ct_ranked = self._get_extrema_MCP_genes_single(ct_subs, mcp=mcp, fraction=fraction)
10571058
for celltype in ct_ranked.keys():
1058-
rank_dfs[mcp][celltype] = sc.get.rank_genes_groups_df(ct_ranked[celltype])
1059+
rank_dfs[mcp][celltype] = sc.get.rank_genes_groups_df(ct_ranked[celltype], group=None)
10591060

10601061
return rank_dfs
10611062

0 commit comments

Comments
 (0)