-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathtest_ligrec.py
463 lines (389 loc) · 18.7 KB
/
test_ligrec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
from __future__ import annotations
import sys
from collections.abc import Mapping, Sequence
from itertools import product
from time import time
from typing import TYPE_CHECKING
import numpy as np
import pandas as pd
import pytest
import scanpy as sc
from anndata import AnnData
from pandas.testing import assert_frame_equal
from scanpy import settings as s
from scanpy.datasets import blobs
from squidpy._constants._pkg_constants import Key
from squidpy.gr import ligrec
from squidpy.gr._ligrec import PermutationTest
_CK = "leiden"
Interactions_t = tuple[Sequence[str], Sequence[str]]
Complexes_t = Sequence[tuple[str, str]]
class TestInvalidBehavior:
def test_not_adata(self):
with pytest.raises(TypeError, match=r"Expected `adata` to be of type `anndata.AnnData`"):
ligrec(None, _CK)
def test_adata_no_raw(self, adata: AnnData):
del adata.raw
with pytest.raises(AttributeError, match=r"No `.raw` attribute"):
ligrec(adata, _CK, use_raw=True)
def test_raw_has_different_n_obs(self, adata: AnnData):
adata.raw = blobs(n_observations=adata.n_obs + 1)
# raise below happend with anndata < 0.9
# with pytest.raises(ValueError, match=rf"Expected `{adata.n_obs}` cells in `.raw`"):
with pytest.raises(ValueError, match=rf"Index length mismatch: {adata.n_obs} vs. {adata.n_obs + 1}"):
ligrec(adata, _CK)
def test_invalid_cluster_key(self, adata: AnnData, interactions: Interactions_t):
with pytest.raises(KeyError, match=r"Cluster key `foobar` not found"):
ligrec(adata, cluster_key="foobar", interactions=interactions)
def test_cluster_key_is_not_categorical(self, adata: AnnData, interactions: Interactions_t):
adata.obs[_CK] = adata.obs[_CK].astype("string")
with pytest.raises(TypeError, match=rf"Expected `adata.obs\[{_CK!r}\]` to be `categorical`"):
ligrec(adata, _CK, interactions=interactions)
def test_only_1_cluster(self, adata: AnnData, interactions: Interactions_t):
adata.obs["foo"] = 1
adata.obs["foo"] = adata.obs["foo"].astype("category")
with pytest.raises(ValueError, match=r"Expected at least `2` clusters, found `1`."):
ligrec(adata, "foo", interactions=interactions)
def test_invalid_complex_policy(self, adata: AnnData, interactions: Interactions_t):
with pytest.raises(ValueError, match=r"Invalid option `foobar` for `ComplexPolicy`."):
ligrec(adata, _CK, interactions=interactions, complex_policy="foobar")
def test_invalid_fdr_axis(self, adata: AnnData, interactions: Interactions_t):
with pytest.raises(ValueError, match=r"Invalid option `foobar` for `CorrAxis`."):
ligrec(adata, _CK, interactions=interactions, corr_axis="foobar", corr_method="fdr_bh")
def test_too_few_permutations(self, adata: AnnData, interactions: Interactions_t):
with pytest.raises(ValueError, match=r"Expected `n_perms` to be positive"):
ligrec(adata, _CK, interactions=interactions, n_perms=0)
def test_invalid_interactions_type(self, adata: AnnData):
with pytest.raises(TypeError, match=r"Expected either a `pandas.DataFrame`"):
ligrec(adata, _CK, interactions=42)
def test_invalid_interactions_dict(self, adata: AnnData):
with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."):
ligrec(adata, _CK, interactions={"foo": ["foo"], "target": ["bar"]})
with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."):
ligrec(adata, _CK, interactions={"source": ["foo"], "bar": ["bar"]})
def test_invalid_interactions_dataframe(self, adata: AnnData, interactions: Interactions_t):
df = pd.DataFrame(interactions, columns=["foo", "target"])
with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."):
ligrec(adata, _CK, interactions=df)
df = pd.DataFrame(interactions, columns=["source", "bar"])
with pytest.raises(KeyError, match=r"Column .* is not in `interactions`."):
ligrec(adata, _CK, interactions=df)
def test_interactions_invalid_sequence(self, adata: AnnData, interactions: Interactions_t):
interactions += ("foo", "bar", "bar") # type: ignore
with pytest.raises(ValueError, match=r"Not all interactions are of length `2`."):
ligrec(adata, _CK, interactions=interactions)
def test_interactions_only_invalid_names(self, adata: AnnData):
with pytest.raises(ValueError, match=r"After filtering by genes"):
ligrec(adata, _CK, interactions=["foo", "bar", "baz"])
def test_invalid_clusters(self, adata: AnnData, interactions: Interactions_t):
with pytest.raises(ValueError, match=r"Invalid cluster `'foo'`."):
ligrec(adata, _CK, interactions=interactions, clusters=["foo"])
def test_invalid_clusters_mix(self, adata: AnnData, interactions: Interactions_t):
with pytest.raises(ValueError, match=r"Expected a `tuple` of length `2`, found `3`."):
ligrec(adata, _CK, interactions=interactions, clusters=["foo", ("bar", "baz")])
class TestValidBehavior:
def test_do_not_use_raw(self, adata: AnnData, interactions: Interactions_t):
del adata.raw
_ = PermutationTest(adata, use_raw=False)
def test_all_genes_capitalized(self, adata: AnnData, interactions: Interactions_t):
pt = PermutationTest(adata).prepare(interactions=interactions)
genes = pd.Series([g for gs in pt.interactions[["source", "target"]].values for g in gs], dtype="string")
np.testing.assert_array_equal(genes.values, genes.str.upper().values)
np.testing.assert_array_equal(pt._data.columns, pt._data.columns.str.upper())
def test_complex_policy_min(self, adata: AnnData, complexes: Complexes_t):
g = adata.raw.var_names
pt = PermutationTest(adata).prepare(interactions=complexes, complex_policy="min")
assert pt.interactions.shape == (5, 2)
assert np.mean(adata.raw[:, g[2]].X) > np.mean(adata.raw[:, g[3]].X) # S
assert np.mean(adata.raw[:, g[6]].X) < np.mean(adata.raw[:, g[7]].X) # T
assert np.mean(adata.raw[:, g[8]].X) < np.mean(adata.raw[:, g[9]].X) # S
assert np.mean(adata.raw[:, g[10]].X) > np.mean(adata.raw[:, g[11]].X) # T
np.testing.assert_array_equal(pt.interactions["source"], list(map(str.upper, [g[0], g[3], g[5], g[8], g[12]])))
np.testing.assert_array_equal(pt.interactions["target"], list(map(str.upper, [g[1], g[4], g[6], g[11], g[13]])))
def test_complex_policy_all(self, adata: AnnData, complexes: Complexes_t):
g = adata.raw.var_names
pt = PermutationTest(adata).prepare(interactions=complexes, complex_policy="all")
assert pt.interactions.shape == (10, 2)
np.testing.assert_array_equal(
pt.interactions.values,
pd.DataFrame(
[
[g[0], g[1]],
[g[2], g[4]],
[g[3], g[4]],
[g[5], g[6]],
[g[5], g[7]],
[g[8], g[10]],
[g[8], g[11]],
[g[9], g[10]],
[g[9], g[11]],
[g[12], g[13]],
]
)
.map(str.upper)
.values,
)
def test_fdr_axis_works(self, adata: AnnData, interactions: Interactions_t):
rc = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=5,
corr_axis="clusters",
seed=42,
n_jobs=1,
show_progress_bar=False,
copy=True,
)
ri = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=5,
corr_axis="interactions",
n_jobs=1,
show_progress_bar=False,
seed=42,
copy=True,
)
np.testing.assert_array_equal(np.where(np.isnan(rc["pvalues"])), np.where(np.isnan(ri["pvalues"])))
mask = np.isnan(rc["pvalues"])
assert not np.allclose(rc["pvalues"].values[mask], ri["pvalues"].values[mask])
def test_inplace_default_key(self, adata: AnnData, interactions: Interactions_t):
key = Key.uns.ligrec(_CK)
assert key not in adata.uns
res = ligrec(adata, _CK, interactions=interactions, n_perms=5, copy=False, show_progress_bar=False)
assert res is None
assert isinstance(adata.uns[key], dict)
r = adata.uns[key]
assert len(r) == 3
assert isinstance(r["means"], pd.DataFrame)
assert isinstance(r["pvalues"], pd.DataFrame)
assert isinstance(r["metadata"], pd.DataFrame)
def test_inplace_key_added(self, adata: AnnData, interactions: Interactions_t):
assert "foobar" not in adata.uns
res = ligrec(
adata, _CK, interactions=interactions, n_perms=5, copy=False, key_added="foobar", show_progress_bar=False
)
assert res is None
assert isinstance(adata.uns["foobar"], dict)
r = adata.uns["foobar"]
assert len(r) == 3
assert isinstance(r["means"], pd.DataFrame)
assert isinstance(r["pvalues"], pd.DataFrame)
assert isinstance(r["metadata"], pd.DataFrame)
def test_return_no_write(self, adata: AnnData, interactions: Interactions_t):
assert "foobar" not in adata.uns
r = ligrec(
adata, _CK, interactions=interactions, n_perms=5, copy=True, key_added="foobar", show_progress_bar=False
)
assert "foobar" not in adata.uns
assert len(r) == 3
assert isinstance(r["means"], pd.DataFrame)
assert isinstance(r["pvalues"], pd.DataFrame)
assert isinstance(r["metadata"], pd.DataFrame)
@pytest.mark.parametrize("fdr_method", [None, "fdr_bh"])
def test_pvals_in_correct_range(self, adata: AnnData, interactions: Interactions_t, fdr_method: str | None):
r = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=5,
copy=True,
show_progress_bar=False,
corr_method=fdr_method,
threshold=0,
)
if np.sum(np.isnan(r["pvalues"].values)) == np.prod(r["pvalues"].shape):
assert fdr_method == "fdr_bh"
else:
assert np.nanmax(r["pvalues"].values) <= 1.0, np.nanmax(r["pvalues"].values)
assert np.nanmin(r["pvalues"].values) >= 0, np.nanmin(r["pvalues"].values)
def test_result_correct_index(self, adata: AnnData, interactions: Interactions_t):
r = ligrec(adata, _CK, interactions=interactions, n_perms=5, copy=True, show_progress_bar=False)
np.testing.assert_array_equal(r["means"].index, r["pvalues"].index)
np.testing.assert_array_equal(r["pvalues"].index, r["metadata"].index)
np.testing.assert_array_equal(r["means"].columns, r["pvalues"].columns)
assert not np.array_equal(r["means"].columns, r["metadata"].columns)
assert not np.array_equal(r["pvalues"].columns, r["metadata"].columns)
def test_result_is_sparse(self, adata: AnnData, interactions: Interactions_t):
interactions = pd.DataFrame(interactions, columns=["source", "target"])
if TYPE_CHECKING:
assert isinstance(interactions, pd.DataFrame)
interactions["metadata"] = "foo"
r = ligrec(adata, _CK, interactions=interactions, n_perms=5, seed=2, copy=True, show_progress_bar=False)
assert r["means"].sparse.density <= 0.15
assert r["pvalues"].sparse.density <= 0.95
with pytest.raises(AttributeError, match=r"Can only use the '.sparse' accessor with Sparse data."):
_ = r["metadata"].sparse
np.testing.assert_array_equal(r["metadata"].columns, ["metadata"])
np.testing.assert_array_equal(r["metadata"]["metadata"], interactions["metadata"])
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_reproducibility_cores(self, adata: AnnData, interactions: Interactions_t, n_jobs: int):
r1 = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=25,
copy=True,
show_progress_bar=False,
seed=42,
n_jobs=n_jobs,
)
r2 = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=25,
copy=True,
show_progress_bar=False,
seed=42,
n_jobs=n_jobs,
)
r3 = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=25,
copy=True,
show_progress_bar=False,
seed=43,
n_jobs=n_jobs,
)
assert r1 is not r2
np.testing.assert_allclose(r1["means"], r2["means"])
np.testing.assert_allclose(r2["means"], r3["means"])
np.testing.assert_allclose(r1["pvalues"], r2["pvalues"])
assert not np.allclose(r3["pvalues"], r1["pvalues"])
assert not np.allclose(r3["pvalues"], r2["pvalues"])
def test_reproducibility_numba_parallel_off(self, adata: AnnData, interactions: Interactions_t):
t1 = time()
r1 = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=25,
copy=True,
show_progress_bar=False,
seed=42,
numba_parallel=False,
)
t1 = time() - t1
t2 = time()
r2 = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=25,
copy=True,
show_progress_bar=False,
seed=42,
numba_parallel=True,
)
t2 = time() - t2
assert r1 is not r2
# for such a small data, overhead from parallelization is too high
assert t1 <= t2, (t1, t2)
np.testing.assert_allclose(r1["means"], r2["means"])
np.testing.assert_allclose(r1["pvalues"], r2["pvalues"])
def test_paul15_correct_means(self, paul15: AnnData, paul15_means: pd.DataFrame):
res = ligrec(
paul15,
"paul15_clusters",
interactions=list(paul15_means.index.to_list()),
corr_method=None,
copy=True,
show_progress_bar=False,
threshold=0.01,
seed=0,
n_perms=1,
n_jobs=1,
)
np.testing.assert_array_equal(res["means"].index, paul15_means.index)
np.testing.assert_array_equal(res["means"].columns, paul15_means.columns)
np.testing.assert_allclose(res["means"].values, paul15_means.values)
def test_reproducibility_numba_off(
self, adata: AnnData, interactions: Interactions_t, ligrec_no_numba: Mapping[str, pd.DataFrame]
):
r = ligrec(
adata, _CK, interactions=interactions, n_perms=5, copy=True, show_progress_bar=False, seed=42, n_jobs=1
)
np.testing.assert_array_equal(r["means"].index, ligrec_no_numba["means"].index)
np.testing.assert_array_equal(r["means"].columns, ligrec_no_numba["means"].columns)
np.testing.assert_array_equal(r["pvalues"].index, ligrec_no_numba["pvalues"].index)
np.testing.assert_array_equal(r["pvalues"].columns, ligrec_no_numba["pvalues"].columns)
np.testing.assert_allclose(r["means"], ligrec_no_numba["means"])
np.testing.assert_allclose(r["pvalues"], ligrec_no_numba["pvalues"])
np.testing.assert_array_equal(np.where(np.isnan(r["pvalues"])), np.where(np.isnan(ligrec_no_numba["pvalues"])))
def test_logging(self, adata: AnnData, interactions: Interactions_t, capsys):
s.logfile = sys.stderr
s.verbosity = 4
ligrec(
adata,
_CK,
interactions=interactions,
n_perms=5,
copy=False,
show_progress_bar=False,
complex_policy="all",
key_added="ligrec_test",
n_jobs=2,
)
err = capsys.readouterr().err
assert "DEBUG: Removing duplicate interactions" in err
assert "DEBUG: Removing duplicate genes in the data" in err
assert "DEBUG: Creating all gene combinations within complexes" in err
assert "DEBUG: Removing interactions with no genes in the data" in err
assert "DEBUG: Removing genes not in any interaction" in err
assert "Running `5` permutations on `25` interactions and `25` cluster combinations using `2` core(s)" in err
assert "Adding `adata.uns['ligrec_test']`" in err
def test_non_uniqueness(self, adata: AnnData, interactions: Interactions_t):
# add complexes
expected = {(r.upper(), l.upper()) for r, l in interactions}
interactions += ( # type: ignore
(f"{interactions[-1][0]}_{interactions[-1][1]}", f"{interactions[-2][0]}_{interactions[-2][1]}"),
) * 2
interactions += interactions[:3] # type: ignore
res = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=1,
copy=True,
show_progress_bar=False,
seed=42,
numba_parallel=False,
)
assert len(res["pvalues"]) == len(expected)
assert set(res["pvalues"].index.to_list()) == expected
@pytest.mark.xfail(reason="AnnData cannot handle writing MultiIndex")
def test_writeable(self, adata: AnnData, interactions: Interactions_t, tmpdir):
ligrec(adata, _CK, interactions=interactions, n_perms=5, copy=False, show_progress_bar=False, key_added="foo")
res = adata.uns["foo"]
sc.write(tmpdir / "ligrec.h5ad", adata)
bdata = sc.read(tmpdir / "ligrec.h5ad")
for key in ["means", "pvalues", "metadata"]:
assert_frame_equal(res[key], bdata.uns["foo"][key])
@pytest.mark.parametrize("use_raw", [False, True])
def test_gene_symbols(self, adata: AnnData, use_raw: bool):
gene_ids = adata.var["gene_ids"]
interactions = tuple(product(gene_ids[:5], gene_ids[:5]))
res = ligrec(
adata,
_CK,
interactions=interactions,
n_perms=5,
use_raw=use_raw,
copy=True,
show_progress_bar=False,
gene_symbols="gene_ids",
)
np.testing.assert_array_equal(res["means"].index, pd.MultiIndex.from_tuples(interactions))
np.testing.assert_array_equal(res["pvalues"].index, pd.MultiIndex.from_tuples(interactions))
np.testing.assert_array_equal(res["metadata"].index, pd.MultiIndex.from_tuples(interactions))
def test_none_source_target(self, adata: AnnData):
pt = PermutationTest(adata).prepare(
{"source": [None, adata.var_names[0]], "target": [None, adata.var_names[1]]}
)
assert isinstance(pt.interactions, pd.DataFrame)
assert len(pt.interactions) == 1