@@ -94,12 +94,12 @@ column and the primary key (`guest_email`).
94
94
## Synthesizing Data
95
95
Next, we can create an ** SDV synthesizer** , an object that you can use to create synthetic data.
96
96
It learns patterns from the real data and replicates them to generate synthetic data. Let's use
97
- the ` FAST_ML ` preset synthesizer, which is optimized for performance .
97
+ the [ GaussianCopulaSynthesizer ] ( https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers/gaussiancopulasynthesizer ) .
98
98
99
99
``` python
100
- from sdv.lite import SingleTablePreset
100
+ from sdv.single_table import GaussianCopulaSynthesizer
101
101
102
- synthesizer = SingleTablePreset (metadata, name = ' FAST_ML ' )
102
+ synthesizer = GaussianCopulaSynthesizer (metadata)
103
103
synthesizer.fit(data = real_data)
104
104
```
105
105
@@ -131,11 +131,15 @@ quality_report = evaluate_quality(
131
131
```
132
132
133
133
```
134
- Creating report: 100%|██████████| 4/4 [00:00<00:00, 19.30it/s]
135
- Overall Quality Score: 89.12%
136
- Properties:
137
- Column Shapes: 90.27%
138
- Column Pair Trends: 87.97%
134
+ Generating report ...
135
+
136
+ (1/2) Evaluating Column Shapes: |████████████████| 9/9 [00:00<00:00, 1133.09it/s]|
137
+ Column Shapes Score: 89.11%
138
+
139
+ (2/2) Evaluating Column Pair Trends: |██████████████████████████████████████████| 36/36 [00:00<00:00, 502.88it/s]|
140
+ Column Pair Trends Score: 88.3%
141
+
142
+ Overall Score (Average): 88.7%
139
143
```
140
144
141
145
This object computes an overall quality score on a scale of 0 to 100% (100 being the best) as well
0 commit comments