Skip to content

Commit 9421b16

Browse files
authored
Replaced FAST_ML with GaussianCopulaSynthesizer & Cleaned up Verbosity (#2020)
1 parent b8313c7 commit 9421b16

File tree

1 file changed

+12
-8
lines changed

1 file changed

+12
-8
lines changed

README.md

Lines changed: 12 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -94,12 +94,12 @@ column and the primary key (`guest_email`).
9494
## Synthesizing Data
9595
Next, we can create an **SDV synthesizer**, an object that you can use to create synthetic data.
9696
It learns patterns from the real data and replicates them to generate synthetic data. Let's use
97-
the `FAST_ML` preset synthesizer, which is optimized for performance.
97+
the [GaussianCopulaSynthesizer](https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers/gaussiancopulasynthesizer).
9898

9999
```python
100-
from sdv.lite import SingleTablePreset
100+
from sdv.single_table import GaussianCopulaSynthesizer
101101

102-
synthesizer = SingleTablePreset(metadata, name='FAST_ML')
102+
synthesizer = GaussianCopulaSynthesizer(metadata)
103103
synthesizer.fit(data=real_data)
104104
```
105105

@@ -131,11 +131,15 @@ quality_report = evaluate_quality(
131131
```
132132

133133
```
134-
Creating report: 100%|██████████| 4/4 [00:00<00:00, 19.30it/s]
135-
Overall Quality Score: 89.12%
136-
Properties:
137-
Column Shapes: 90.27%
138-
Column Pair Trends: 87.97%
134+
Generating report ...
135+
136+
(1/2) Evaluating Column Shapes: |████████████████| 9/9 [00:00<00:00, 1133.09it/s]|
137+
Column Shapes Score: 89.11%
138+
139+
(2/2) Evaluating Column Pair Trends: |██████████████████████████████████████████| 36/36 [00:00<00:00, 502.88it/s]|
140+
Column Pair Trends Score: 88.3%
141+
142+
Overall Score (Average): 88.7%
139143
```
140144

141145
This object computes an overall quality score on a scale of 0 to 100% (100 being the best) as well

0 commit comments

Comments
 (0)