-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeepmip_modules.py
1641 lines (1470 loc) · 56.2 KB
/
deepmip_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import xarray as xr
import pandas as pd
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import cmocean
import seaborn as sns
import holoviews as hv
from holoviews import opts
import streamlit as st
import matplotlib.colors as colors
from cartopy.util import add_cyclic_point
from pathlib import Path
from deepmip_eocene_p1_experiments import exp_dict
from deepmip_eocene_p1_models import model_dict
from deepmip_variables import variable_dict
hv.extension("bokeh")
def model_table():
df = pd.DataFrame(
columns=[
"Model",
"Short Name",
"CMIP generation",
"Paleogeography",
]
)
for model in model_dict.keys():
df.loc[len(df)] = [
model,
model_dict[model]["abbrv"],
model_dict[model]["CMIP generation"],
(
"Herold et al. (2014)"
if model_dict[model]["rotation"] == "H14"
else "Baatsen et al. (2016)"
),
]
for exp in exp_dict.keys():
ticks = []
for model in model_dict.keys():
if exp in model_dict[model]["exps"]:
ticks.append(True)
else:
ticks.append(False)
df[exp_dict[exp]["short_name"]] = ticks
return df
def get_csv_data(csv_template, proxy_flag):
if csv_template == "Enter your own data":
csv_data = ""
else:
proxy_db = pd.read_csv(
"data/Hollis 2019 DeepMIP compilation.csv", encoding="unicode_escape"
)
# get locations with proxy data estimates
if proxy_flag:
proxy_db_reduced = proxy_db[["site", "lat", "lon", "50", "sd"]]
proxy_db_reduced["site"] = proxy_db[["site", "timeslice", "proxy"]].agg(
"-".join, axis=1
)
# get locations without proxy data estimates
else:
proxy_db_reduced = proxy_db[["site", "lat", "lon"]]
if csv_template == "DeepMIP marine proxies (latest Paleocene)":
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "lp"]
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "sst"]
elif (
csv_template == "DeepMIP marine proxies (Paleocene–Eocene Thermal Maximum)"
):
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "petm"]
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "sst"]
elif csv_template == "DeepMIP marine proxies (early Eocene Climatic Optimum)":
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "eeco"]
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "sst"]
elif csv_template == "DeepMIP terrestrial proxies (latest Paleocene)":
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "lp"]
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "lat"]
elif (
csv_template
== "DeepMIP terrestrial proxies (Paleocene–Eocene Thermal Maximum)"
):
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "petm"]
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "lat"]
elif (
csv_template
== "DeepMIP terrestrial proxies (early Eocene Climatic Optimum)"
):
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "eeco"]
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "lat"]
elif csv_template == "DeepMIP marine+terrestrial proxies (latest Paleocene)":
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "lp"]
elif (
csv_template
== "DeepMIP marine+terrestrial proxies (Paleocene–Eocene Thermal Maximum)"
):
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "petm"]
elif (
csv_template
== "DeepMIP marine+terrestrial proxies (early Eocene Climatic Optimum)"
):
proxy_db_reduced = proxy_db_reduced[proxy_db.timeslice == "eeco"]
elif csv_template == "DeepMIP land (all time periods)":
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "lat"]
elif csv_template == "DeepMIP marine proxies (all time periods)":
proxy_db_reduced = proxy_db_reduced[proxy_db.temperature == "sst"]
proxy_db_reduced = proxy_db_reduced.drop_duplicates(subset="site", keep="first")
csv_data = proxy_db_reduced.to_csv(index=False, header=False)
return csv_data
@st.cache_data
def get_paleo_locations(modern_lats, modern_lons, names):
# models use two different paleogeographic reconstructions:
# 1. most model use the Herold et al. (2014) reconstruction, hereafter "H14"
# 2. NorESM1_F uses the Baatsen et al. (2016) reconstruction, hereafter "B16"
# open both rotation files used by the models
rotation_file_H14 = xr.open_dataset("data/LatLon_PD_55Ma_Herold2014.nc")
rotation_file_B16 = xr.open_dataset("data/LatLon_PD_55Ma_Baatsen2016.nc")
# initialize empty list to store results
d = []
skipped_sites = []
# loop over all sites
for count, modern_lat in enumerate(modern_lats):
modern_lon = modern_lons[count]
# 1. coarse approximation: look up paleolocation for modern coordinates
# in rotation file
paleo_lat_H14 = rotation_file_H14.LAT.sel(
latitude=modern_lat, longitude=modern_lon, method="nearest"
).values
paleo_lon_H14 = rotation_file_H14.LON.sel(
latitude=modern_lat, longitude=modern_lon, method="nearest"
).values
paleo_lat_B16 = rotation_file_B16.LAT.sel(
latitude=modern_lat, longitude=modern_lon, method="nearest"
).values
paleo_lon_B16 = rotation_file_B16.LON.sel(
latitude=modern_lat, longitude=modern_lon, method="nearest"
).values
# check if paleo location is found
if np.isfinite(paleo_lat_H14) and np.isfinite(paleo_lat_B16):
# 2. fine approximation: add delta between modern selected and
# rotation grid coordinates back to paleolocation
delta_lat_H14 = (
modern_lat
- rotation_file_H14.latitude.sel(
latitude=modern_lat, method="nearest"
).values
)
delta_lon_H14 = (
modern_lon
- rotation_file_H14.longitude.sel(
longitude=modern_lon, method="nearest"
).values
)
paleo_lat_H14 += delta_lat_H14
paleo_lon_H14 += delta_lon_H14
delta_lat_B16 = (
modern_lat
- rotation_file_H14.latitude.sel(
latitude=modern_lat, method="nearest"
).values
)
delta_lon_B16 = (
modern_lon
- rotation_file_H14.longitude.sel(
longitude=modern_lon, method="nearest"
).values
)
paleo_lat_B16 += delta_lat_B16
paleo_lon_B16 += delta_lon_B16
# build iteratively to allow for multiple sites
d.append(
{
"modern lat": modern_lat,
"modern lon": modern_lon,
"Eocene (55Ma) lat H14": paleo_lat_H14,
"Eocene (55Ma) lon H14": paleo_lon_H14,
"Eocene (55Ma) lat B16": paleo_lat_B16,
"Eocene (55Ma) lon B16": paleo_lon_B16,
"name": names[count],
}
)
else:
# if no paleo location is found, raise an exception in single-site mode
if len(modern_lats) == 1:
st.exception(
ValueError(
"No paleo location found for modern coordinates. Please try "
"again with a different location."
)
)
st.stop()
else:
# check whether we can get a location from Hollis et al. (2019)
proxy_db = pd.read_csv(
"data/Hollis 2019 DeepMIP compilation.csv",
encoding="unicode_escape",
)
# get shjort name of site consistent with Hollis et al. (2019) data
name_short = names[count].split("-")[0]
# if proxy is in Hollis et al. (2019) compilation, use that location
if (proxy_db["site"] == name_short).any():
mlat = proxy_db.loc[proxy_db.site == name_short].iloc[0].mlat
mlon = proxy_db.loc[proxy_db.site == name_short].iloc[0].mlon
plat = proxy_db.loc[proxy_db.site == name_short].iloc[0].plat
plon = proxy_db.loc[proxy_db.site == name_short].iloc[0].plon
d.append(
{
"modern lat": modern_lat,
"modern lon": modern_lon,
"Eocene (55Ma) lat H14": mlat,
"Eocene (55Ma) lon H14": mlon,
"Eocene (55Ma) lat B16": plat,
"Eocene (55Ma) lon B16": plon,
"name": names[count],
}
)
else:
skipped_sites.append(names[count])
continue
if len(skipped_sites) > 0:
st.warning(
"No paleo location found for modern coordinates of the following sites: "
+ ", ".join(skipped_sites)
+ " ("
+ str(len(skipped_sites))
+ "/"
+ str(len(modern_lats))
+ " sites skipped)."
)
# convert to dataframe
df = pd.DataFrame(d)
# return DataFrame
return df
# def get_model_point_data(modern_lat, modern_lon, paleo_lat, paleo_lon, variable):
@st.cache_data
def get_model_point_data(df, variable):
# allocate empty list to store results for all models
data_list = []
progress_bar = st.progress(0)
# loop over all models and experiments
for exp_count, exp in enumerate(exp_dict.keys()):
for model in model_dict.keys():
progress_bar.progress(
((exp_count + 1) / (len(exp_dict.keys()))),
text="Extracting data data for experiment " + exp,
)
# construct filename following the DeepMIP convention
if variable == "tos":
model_file = (
"data/data_for_DeepMIP_app/"
+ model_dict[model]["family"]
+ "/"
+ model
+ "/"
+ exp
+ "/"
+ model_dict[model]["versn"]
+ "/climatology/"
+ variable
+ "_"
+ model
+ "_"
+ exp
+ "_"
+ model_dict[model]["versn"]
+ ".mean.r360x180.filled.nc"
)
else:
model_file = (
"data/data_for_DeepMIP_app/"
+ model_dict[model]["family"]
+ "/"
+ model
+ "/"
+ exp
+ "/"
+ model_dict[model]["versn"]
+ "/climatology/"
+ variable
+ "_"
+ model
+ "_"
+ exp
+ "_"
+ model_dict[model]["versn"]
+ ".mean.r360x180.nc"
)
print(model_file)
# load data if file for model/experiment combination exists
if Path(model_file).exists():
ds_model = xr.open_dataset(model_file, decode_times=False)
# get coordinate names
for coord in ds_model.coords:
if coord in ["lat", "latitude"]:
lat_name = coord
elif coord in ["lon", "longitude"]:
lon_name = coord
# loop over all locations
for index, row in df.iterrows():
if exp == "deepmip-eocene-p1-PI":
lookup_lat = float(row["modern lat"])
lookup_lon = float(row["modern lon"])
else:
lookup_lat = float(
row["Eocene (55Ma) lat " + model_dict[model]["rotation"]]
)
lookup_lon = float(
row["Eocene (55Ma) lon " + model_dict[model]["rotation"]]
)
# check for minimum model longitude
min_model_lon = np.amin(ds_model.coords[lon_name].values)
if min_model_lon >= 0.0 and lookup_lon < 0.0:
# convert lookup_lon from [-180:180] to [0:360]
lookup_lon_model = lookup_lon + 360.0
else:
lookup_lon_model = lookup_lon
var_data = getattr(ds_model, variable)
if variable == "tas":
# convert from Kelvin to Celsius
site_data = (
var_data.sel(
**{lat_name: lookup_lat},
**{lon_name: lookup_lon_model},
method="nearest",
).values
- 273.15
)
unit = "°C"
elif variable == "pr":
# convert from kg m-2 s-1 to mm/day
site_data = (
var_data.sel(
**{lat_name: lookup_lat},
**{lon_name: lookup_lon_model},
method="nearest",
).values
* 86400.0
)
unit = "mm/day"
else:
site_data = (
var_data.sel(
**{lat_name: lookup_lat},
**{lon_name: lookup_lon_model},
method="nearest",
).values
* 1.0
)
unit = variable_dict[variable]["unit"]
# get GMST
exp_list = model_dict[model]["exps"]
gmst_list = model_dict[model]["gmst"]
# check vailable model experiments against full list
for count, model_exp in enumerate(exp_list):
if model_exp == exp:
gmst = gmst_list[count]
# store results for individual metrics in a dictionary
# monthly data available
if len(site_data) == 12:
data_list.append(
dict(
model_short=model_dict[model]["abbrv"],
model=model,
experiment=exp_dict[exp]["long_name"],
CO2=float(exp_dict[exp]["CO2"]),
GMST=gmst,
site_name=row["name"],
lat=np.round(lookup_lat, 2),
lon=np.round(lookup_lon, 2),
var=variable,
long_name=variable_dict[variable]["long_name"],
unit=unit,
annual_mean=np.mean(site_data),
monthly_min=np.min(site_data),
monthly_max=np.max(site_data),
DJF=np.mean(site_data[[11, 0, 1]]),
MAM=np.mean(site_data[[2, 3, 4]]),
JJA=np.mean(site_data[[5, 6, 7]]),
SON=np.mean(site_data[[8, 9, 10]]),
Jan=float(site_data[0]),
Feb=float(site_data[1]),
Mar=float(site_data[2]),
Apr=float(site_data[3]),
May=float(site_data[4]),
Jun=float(site_data[5]),
Jul=float(site_data[6]),
Aug=float(site_data[7]),
Sep=float(site_data[8]),
Oct=float(site_data[9]),
Nov=float(site_data[10]),
Dec=float(site_data[11]),
)
)
# only annual data available
elif len(site_data) == 1:
data_list.append(
dict(
model_short=model_dict[model]["abbrv"],
model=model,
experiment=exp_dict[exp]["long_name"],
CO2=float(exp_dict[exp]["CO2"]),
GMST=gmst,
site_name=row["name"],
lat=np.round(lookup_lat, 2),
lon=np.round(lookup_lon, 2),
var=variable,
long_name=variable_dict[variable]["long_name"],
unit=unit,
annual_mean=float(site_data[0]),
)
)
# convert dictionary to Pandas dataframe for easier handling and plotting
df_out = pd.DataFrame(data_list).round(1)
# calculate ensemble mean for each site and experiment
for exp in exp_dict.keys():
for index, row in df.iterrows():
df_out.loc[len(df_out)] = df_out.loc[
(df_out["experiment"] == exp_dict[exp]["long_name"])
& (df_out["site_name"] == row["name"])
].mean(numeric_only=True)
# set ensemble mean metadata
df_out.loc[len(df_out) - 1, "model"] = "ensemble_mean"
df_out.loc[len(df_out) - 1, "model_short"] = "mean"
df_out.loc[len(df_out) - 1, "experiment"] = exp_dict[exp]["long_name"]
df_out.loc[len(df_out) - 1, "var"] = variable
df_out.loc[len(df_out) - 1, "long_name"] = variable_dict[variable][
"long_name"
]
df_out.loc[len(df_out) - 1, "unit"] = unit
df_out.loc[len(df_out) - 1, "site_name"] = row["name"]
progress_bar.empty()
return df_out.round(1)
# convert locations of single or multiple sites from user input to lists to easily \\
# loop analysis over all chosen sites
def sites_to_list(csv_input, split_sites):
modern_lats = []
modern_lons = []
names = []
proxy_means = []
proxy_stds = []
lines = csv_input.split("\n") # A list of lines
for line in lines:
if line != "":
# first check whether input has correct number of values
if len(line.split(",")) == 3:
name, lat, lon = line.split(",")
mean = -999.9
std = -999.9
elif len(line.split(",")) == 4:
name, lat, lon, mean = line.split(",")
std = -999.9
elif len(line.split(",")) == 5:
name, lat, lon, mean, std = line.split(",")
if (
split_sites == False
): # get shjort name of site consistent with Hollis et al. (2019) data
name = name.split("-")[0]
else:
st.error("Error in line: " + line)
st.error(
"CSV input must be in the format: name, modern latitude, modern longitude, proxy mean (OPTIONAL), proxy uncertainty (OPTIONAL)"
)
st.stop()
# skip duplicate sites
if name in names:
continue
# split =
if "" in line.split(","):
st.error("Error in line: " + line)
st.error("all values need to be defined")
st.stop()
# check whether latitude is number
if lat.replace(".", "", 1).replace("-", "", 1).isdigit():
modern_lats.append(float(lat))
else:
st.error("Error in line: " + line)
st.error("latitude must be a number")
st.stop()
# check whether longitude is number
if lon.replace(".", "", 1).replace("-", "", 1).isdigit():
modern_lons.append(float(lon))
else:
st.error("Error in line: " + line)
st.error("longitude must be a number")
st.stop()
names.append(name)
if mean != "" and mean != -999.9:
# check whether proxy mean is number
if mean.replace(".", "", 1).replace("-", "", 1).isdigit() == False:
st.error("Error in line: " + line)
st.error("proxy mean must be a number")
st.stop()
proxy_means.append(float(mean))
if std != "" and std != -999.9:
# check whether proxy std is number
if std.replace(".", "", 1).replace("-", "", 1).isdigit() == False:
st.error("Error in line: " + line)
st.error("proxy uncertainty must be a number")
st.stop()
proxy_stds.append(float(std))
return modern_lats, modern_lons, names, proxy_means, proxy_stds
# get color from model_dict
def get_color(model_short):
col = model_dict.get(model_short, {}).get("color", "black")
print(model_short)
print(col)
return model_dict.get(model_short, {}).get("color", "black")
@st.cache_data
def location_data_boxplot(df, proxy_flag, proxy_mean, proxy_std, proxy_label):
df_plot = df[(df.model != "ensemble_mean")]
# get paleolocation
df_Eocene = df_plot.loc[df_plot["experiment"] != "piControl"]
plat = df_Eocene.iloc[0]["lat"]
plon = df_Eocene.iloc[0]["lon"]
variable = df_plot.iloc[0]["var"]
# change dataframe from wide (9 columns) to long (3 columns) format to use
# hue method in seaborn boxplot
dfMelt = pd.melt(
df_plot,
id_vars=["experiment"],
value_vars=[
"annual_mean",
"monthly_min",
"monthly_min",
"monthly_max",
"DJF",
"MAM",
"JJA",
"SON",
],
)
# define figure layout first
fig, axes = plt.subplots(2, 1, figsize=(13, 16))
# generate list of medium-length experiment names for plot ordering
list_medium_names = []
for key, value in exp_dict.items():
list_medium_names.append(value["medium_name"])
# boxplot with seaborn
# (https://seaborn.pydata.org/generated/seaborn.boxplot.html)
ax3 = sns.boxplot(
data=dfMelt,
x="experiment",
y="value",
hue="variable",
hue_order=["annual_mean", "monthly_min", "monthly_max"],
order=list_medium_names,
palette=["tab:green", "tab:blue", "tab:red"],
linewidth=2.0,
ax=axes[0],
)
ax3 = sns.swarmplot(
data=dfMelt,
x="experiment",
y="value",
hue="variable",
hue_order=["annual_mean", "monthly_min", "monthly_max"],
order=list_medium_names,
palette=["tab:green", "tab:blue", "tab:red"],
linewidth=1.5,
edgecolor="black",
size=5,
dodge=True,
ax=axes[0],
)
ax4 = sns.boxplot(
data=dfMelt,
x="experiment",
y="value",
hue="variable",
hue_order=["DJF", "MAM", "JJA", "SON"],
palette=["tab:blue", "tab:orange", "tab:green", "tab:red"],
linewidth=2.0,
ax=axes[1],
)
ax4 = sns.swarmplot(
data=dfMelt,
x="experiment",
y="value",
hue="variable",
hue_order=["DJF", "MAM", "JJA", "SON"],
palette=["tab:blue", "tab:orange", "tab:green", "tab:red"],
linewidth=1.5,
edgecolor="black",
size=5,
dodge=True,
ax=axes[1],
)
# add optional proxy estimates as reference
if proxy_flag:
if proxy_std != "":
ax3.axhspan(
proxy_mean - proxy_std,
proxy_mean + proxy_std,
facecolor="lightcoral",
alpha=0.4,
zorder=0.0,
)
ax4.axhspan(
proxy_mean - proxy_std,
proxy_mean + proxy_std,
facecolor="lightcoral",
alpha=0.4,
zorder=0.0,
)
ax3.text(
1.5,
proxy_mean + proxy_std,
proxy_label,
fontsize=20,
color="lightcoral",
verticalalignment="bottom",
)
ax4.text(
1.5,
proxy_mean + proxy_std,
proxy_label,
fontsize=20,
color="lightcoral",
verticalalignment="bottom",
)
titleString = (
"DeepMIP "
+ variable_dict[variable]["long_name"]
+ " (LAT = "
+ str(np.round(plat, 1))
+ " / LON = "
+ str(np.round(plon, 1))
+ ")"
)
yLabel = variable_dict[variable]["long_name"] + " [" + df.iloc[0]["unit"] + "]"
handles, labels = ax3.get_legend_handles_labels()
ax3.legend(handles[0:3], labels[0:3], fontsize="16")
ax3.set(title=titleString, xlabel="", ylabel=yLabel)
[
ax3.axvline(x, color="gray", linestyle="-", linewidth=0.5, zorder=0.0)
for x in [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]
]
handles2, labels2 = ax4.get_legend_handles_labels()
ax4.legend(handles2[0:4], labels2[0:4], fontsize="16")
ax4.set(title=titleString, xlabel="", ylabel=yLabel)
[
ax4.axvline(x, color="gray", linestyle="-", linewidth=0.5, zorder=0.0)
for x in [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]
]
return fig
def scatter_line_plot(
df, var_y, var_x, proxy_check, proxy_mean, proxy_std, proxy_label
):
df_plot = df[(df.model != "ensemble_mean")]
if var_x == "experiment":
df_redcued = df_plot
log_x = False
elif var_x == "CO2":
log_x = True
df_redcued = df_plot.loc[df_plot["experiment"] != "deepmip-eocene-p1-PI"]
elif var_x == "GMST":
log_x = False
df_redcued = df_plot.loc[df_plot["experiment"] != "deepmip-eocene-p1-PI"]
unit = df_plot.iloc[0]["unit"]
ylabel = var_y + " [" + unit + "]"
# yLabel = variable_dict[variable]["long_name"] + " [" + df.iloc[0]["unit"] + "]"
ylabel = df.iloc[0]["long_name"] + " [" + unit + "]"
# generate lists of experiment anmes for plot ordering
list_medium_names = []
list_long_names = []
for key, value in exp_dict.items():
list_medium_names.append(value["medium_name"])
list_long_names.append(value["long_name"])
# add proxy reference annotations
if proxy_check:
hline = hv.HLine(proxy_mean).opts(opts.HLine(color="coral", alpha=1.0))
if proxy_std >= 0.0:
hspan = hv.HSpan(proxy_mean - proxy_std, proxy_mean + proxy_std).opts(
opts.HSpan(color="lightcoral", alpha=0.4)
)
label_offset = 0.7 * proxy_std
else:
label_offset = 0.1 * proxy_mean
if var_x == "experiment":
text_x = "DeepMIP_1x"
elif var_x == "CO2":
text_x = 500
elif var_x == "GMST":
text_x = 20
htext = hv.Text(text_x, proxy_mean + label_offset, proxy_label).opts(
opts.Text(color="lightcoral", align="start")
)
# generate plot labels
if var_x == "experiment":
xlabel = "DeepMIP experiment"
elif var_x == "CO2":
xlabel = "atmospheric CO₂ [ppmv]"
elif var_x == "GMST":
xlabel = "GMST [°C]"
variable = df_plot.iloc[0]["var"]
titleString = (
"DeepMIP "
+ variable_dict[variable]["long_name"]
+ " ("
+ var_y.replace("_", " ")
+ ")"
)
print(df_redcued)
# get colors from model_dict
df_redcued["color"] = df_redcued["model"].apply(get_color)
# Replace the values in the 'experiment' column
replacement_dict = dict(zip(list_long_names, list_medium_names))
df_redcued["experiment"] = df_redcued["experiment"].replace(replacement_dict)
scatter = (
hv.Scatter(
df_redcued,
kdims=[var_x],
vdims=[var_y, "model_short", "experiment", "color"],
)
.groupby("model_short")
.overlay()
.opts(
opts.Scatter(
logx=log_x,
xlabel=xlabel,
ylabel=ylabel,
jitter=0.0,
title=titleString,
height=600,
width=800,
color="color",
show_legend=True,
legend_position="top",
size=12,
tools=["hover", "wheel_zoom"],
line_color="black",
fontsize={
"legend": 8,
"title": 14,
"labels": 14,
"xticks": 11,
"yticks": 11,
},
)
)
)
if var_x == "experiment":
print("¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡")
print(var_y)
box = hv.BoxWhisker(df_redcued, kdims=[var_x], vdims=[var_y]).opts(
opts.BoxWhisker(
logx=log_x,
box_color="white",
height=600,
width=800,
responsive=True,
show_legend=False,
whisker_color="black",
box_fill_color="#63c5da",
fontsize={
"legend": 8,
"title": 14,
"labels": 14,
"xticks": 10,
"yticks": 11,
},
)
)
if proxy_check:
if proxy_std >= 0.0:
composition = hspan * hline * box * scatter * htext
else:
composition = hline * box * scatter * htext
else:
composition = box * scatter
else:
line = (
hv.Curve(df_redcued, kdims=[var_x], vdims=[var_y, "model_short", "color"])
.redim.values(**{"experiment": list_medium_names})
.groupby("model_short")
.overlay()
.opts(
opts.Scatter(size=12),
opts.Curve(
logx=log_x,
line_width=2, # You can adjust the line width as needed
color="color", # Use the 'color' column for line colors
),
)
)
# text = (
# hv.Text(
# )
if proxy_check:
if proxy_std >= 0.0:
composition = hspan * hline * line * scatter * htext
else:
composition = hline * line * scatter * htext
else:
composition = scatter * line
return composition
def annual_cycle_plot(df, proxy_check, proxy_mean, proxy_std, proxy_label):
months = [
"model_short",
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
]
lines = []
spreads = []
# loop over all models and experiments
for exp_count, exp in enumerate(exp_dict.keys()):
if exp == "deepmip-eocene-p1-PI":
continue
df_exp = df[(df.experiment == exp_dict[exp]["long_name"])]
# df_monthly = df_exp[months].transpose().rename(columns={'mean':'ensemble mean'}, inplace=True)
df_monthly = df_exp[months].transpose()
df_monthly.columns = df_monthly.iloc[0]
df_monthly = df_monthly[1:].rename(columns={"mean": "ensemble mean"})
df_monthly["month"] = months[1:13]
df_monthly["experiment"] = exp_dict[exp]["long_name"]
for model in model_dict.keys():
# individual models
if exp in model_dict[model]["exps"]:
line = hv.Curve(
df_monthly,
"month",
vdims=[model_dict[model]["abbrv"], "experiment"],
label=exp_dict[exp]["short_name"],
).opts(
line_color=exp_dict[exp]["color"],
alpha=1.0,
line_width=1.0,
line_dash="dashed",
)
lines.append(line)
# ensemble mean
line = hv.Curve(
df_monthly,
"month",
vdims=["ensemble mean", "experiment"],
label=exp_dict[exp]["short_name"],
).opts(line_color=exp_dict[exp]["color"], alpha=1.0, line_width=5.0)
lines.append(line)
# generate plot labels
xlabel = "calendar month"
unit = df.iloc[0]["unit"]
ylabel = df.iloc[0]["long_name"] + " [" + unit + "]"
variable = df.iloc[0]["var"]
titleString = "DeepMIP " + variable_dict[variable]["long_name"] + " (annual cycle)"
# add proxy reference annotations
if proxy_check:
hline = hv.HLine(proxy_mean).opts(opts.HLine(color="coral", alpha=1.0))
if proxy_std >= 0.0:
hspan = hv.HSpan(proxy_mean - proxy_std, proxy_mean + proxy_std).opts(
opts.HSpan(color="lightcoral", alpha=0.4)
)
label_offset = 0.7 * proxy_std
else:
label_offset = 0.1 * proxy_mean
text_x = "Feb"
htext = hv.Text(text_x, proxy_mean + label_offset, proxy_label).opts(
opts.Text(color="lightcoral", align="start")
)
overlay_lines = hv.Overlay(lines).opts(
opts.Curve(
xlabel=xlabel,
ylabel=ylabel,
title=titleString,
height=600,
width=800,
# responsive=True,
show_legend=True,
tools=["hover", "wheel_zoom"],
fontsize={
"legend": 8,
"title": 14,
"labels": 14,
"xticks": 11,
"yticks": 11,
},
),
)
if proxy_check:
if proxy_std >= 0.0:
composition = hspan * hline * overlay_lines
else:
composition = hline * overlay_lines
else:
composition = overlay_lines