|
| 1 | +import functools |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from scipy.stats import norm as ndist |
| 5 | + |
| 6 | +import regreg.api as rr |
| 7 | + |
| 8 | +# load in the X matrix |
| 9 | + |
| 10 | +from selection.tests.instance import HIV_NRTI |
| 11 | +X_full = HIV_NRTI(datafile="NRTI_DATA.txt", standardize=False)[0] |
| 12 | + |
| 13 | +from learn_selection.utils import full_model_inference, liu_inference, pivot_plot |
| 14 | +from learn_selection.core import split_sampler, keras_fit |
| 15 | +from learn_selection.Rutils import lasso_glmnet, cv_glmnet_lam |
| 16 | + |
| 17 | +boot_design = False |
| 18 | + |
| 19 | +def simulate(s=10, signal=(0.5, 1), sigma=2, alpha=0.1, B=5000, seed=0): |
| 20 | + |
| 21 | + # description of statistical problem |
| 22 | + |
| 23 | + n, p = X_full.shape |
| 24 | + |
| 25 | + if boot_design: |
| 26 | + idx = np.random.choice(np.arange(n), n, replace=True) |
| 27 | + X = X_full[idx] # bootstrap X to make it really an IID sample, i.e. don't condition on X throughout |
| 28 | + X += 0.1 * np.std(X) * np.random.standard_normal(X.shape) # to make non-degenerate |
| 29 | + else: |
| 30 | + X = X_full.copy() |
| 31 | + |
| 32 | + X = X - np.mean(X, 0)[None, :] |
| 33 | + X = X / np.std(X, 0)[None, :] |
| 34 | + |
| 35 | + n, p = X.shape |
| 36 | + truth = np.zeros(p) |
| 37 | + truth[:s] = np.linspace(signal[0], signal[1], s) |
| 38 | + np.random.shuffle(truth) |
| 39 | + truth /= np.sqrt(n) |
| 40 | + truth *= sigma |
| 41 | + |
| 42 | + y = X.dot(truth) + sigma * np.random.standard_normal(n) |
| 43 | + |
| 44 | + lam_min, lam_1se = cv_glmnet_lam(X.copy(), y.copy(), seed=seed) |
| 45 | + lam_min, lam_1se = n * lam_min, n * lam_1se |
| 46 | + |
| 47 | + XTX = X.T.dot(X) |
| 48 | + XTXi = np.linalg.inv(XTX) |
| 49 | + resid = y - X.dot(XTXi.dot(X.T.dot(y))) |
| 50 | + dispersion = np.linalg.norm(resid)**2 / (n-p) |
| 51 | + |
| 52 | + S = X.T.dot(y) |
| 53 | + covS = dispersion * X.T.dot(X) |
| 54 | + splitting_sampler = split_sampler(X * y[:, None], covS) |
| 55 | + |
| 56 | + def meta_algorithm(XTX, XTXi, lam, sampler): |
| 57 | + |
| 58 | + p = XTX.shape[0] |
| 59 | + success = np.zeros(p) |
| 60 | + |
| 61 | + loss = rr.quadratic_loss((p,), Q=XTX) |
| 62 | + pen = rr.l1norm(p, lagrange=lam) |
| 63 | + |
| 64 | + scale = 0. |
| 65 | + noisy_S = sampler(scale=scale) |
| 66 | + loss.quadratic = rr.identity_quadratic(0, 0, -noisy_S, 0) |
| 67 | + problem = rr.simple_problem(loss, pen) |
| 68 | + soln = problem.solve(max_its=100, tol=1.e-10) |
| 69 | + success += soln != 0 |
| 70 | + return set(np.nonzero(success)[0]) |
| 71 | + |
| 72 | + lam = 4. * np.sqrt(n) |
| 73 | + selection_algorithm = functools.partial(meta_algorithm, XTX, XTXi, lam) |
| 74 | + |
| 75 | + # run selection algorithm |
| 76 | + |
| 77 | + df = full_model_inference(X, |
| 78 | + y, |
| 79 | + truth, |
| 80 | + selection_algorithm, |
| 81 | + splitting_sampler, |
| 82 | + success_params=(1, 1), |
| 83 | + B=B, |
| 84 | + fit_probability=keras_fit, |
| 85 | + fit_args={'epochs':10, 'sizes':[100]*5, 'dropout':0., 'activation':'relu'}) |
| 86 | + |
| 87 | + if False: # df is not None: |
| 88 | + liu_df = liu_inference(X, |
| 89 | + y, |
| 90 | + lam, |
| 91 | + dispersion, |
| 92 | + truth, |
| 93 | + alpha=alpha) |
| 94 | + |
| 95 | + return pd.merge(df, liu_df, on='variable') |
| 96 | + else: |
| 97 | + return df |
| 98 | + |
| 99 | +if __name__ == "__main__": |
| 100 | + import statsmodels.api as sm |
| 101 | + import matplotlib.pyplot as plt |
| 102 | + import pandas as pd |
| 103 | + |
| 104 | + U = np.linspace(0, 1, 101) |
| 105 | + plt.clf() |
| 106 | + |
| 107 | + init_seed = np.fabs(np.random.standard_normal() * 500) |
| 108 | + for i in range(500): |
| 109 | + df = simulate(seed=init_seed+i) |
| 110 | + csvfile = 'HIV_fixed.csv' |
| 111 | + outbase = csvfile[:-4] |
| 112 | + |
| 113 | + if df is not None and i > 0: |
| 114 | + |
| 115 | + try: |
| 116 | + df = pd.concat([df, pd.read_csv(csvfile)]) |
| 117 | + except FileNotFoundError: |
| 118 | + pass |
| 119 | + df.to_csv(csvfile, index=False) |
| 120 | + |
| 121 | + if len(df['pivot']) > 0: |
| 122 | + pivot_ax, lengths_ax = pivot_plot(df, outbase) |
| 123 | +# liu_pivot = df['liu_pivot'] |
| 124 | +# liu_pivot = liu_pivot[~np.isnan(liu_pivot)] |
| 125 | +# pivot_ax.plot(U, sm.distributions.ECDF(liu_pivot)(U), 'gray', label='Liu CV', |
| 126 | +# linewidth=3) |
| 127 | +# pivot_ax.legend() |
| 128 | +# fig = pivot_ax.figure |
| 129 | +# fig.savefig(csvfile[:-4] + '.pdf') |
| 130 | + |
0 commit comments