-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinfofp.html
1049 lines (739 loc) ยท 20.5 KB
/
infofp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>Haskell - The Legend of DSLs</title>
<meta charset="utf-8">
<style>
/* @import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic); */
@import url(css/metropolis.css);
</style>
</head>
<body>
<textarea id="source">
class: center, middle, title-slide
count: false
![Haskell - The Legend of DSLs](img/session1.png)
.less-line-height[
Alejandro Serrano @ INFOFP 2023-24
.grey[๐ฆ @trupill - ๐จโ๐ป JetBrains <br /> `serranofp.com`]
]
---
# In previous years...
```
Your knowledge of C#
+ Your knowledge of Haskell
---------------------------------
Ready for mainstream programming!
```
---
# In previous years...
```
Your knowledge of C#
+ Your knowledge of Haskell
---------------------------------
Ready for mainstream programming!
```
Last decade has been a good one for programing languages
- Java or C# were stuck in 2000s
- Now we have Scala, Kotlin, Swift, Elixir!
- And Java and C# are catching up
---
# Higher order functions are just there
### .grey[You understand this!]
From the Java documentation
.code70[
```java
int sum =
widgets.stream()
.filter(w -> w.getColor() == RED)
.mapToInt(w -> w.getWeight())
.sum();
```
]
.font60[
Reference: <br /> `https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html`
]
---
# In previous years...
```
Your knowledge of C#
+ Your knowledge of Haskell
---------------------------------
Ready for mainstream programming!
```
> Most of these ideas come from FP
INFOFP has become really relevant
--
## **Let's do something else instead!**
---
# <img src="img/pikachu.png" width="32px" /> Pokรฉmon Trading Card Game
Players take turns drawing and playing cards
<table>
<tr>
<td style="vertical-align: top"><img src="img/pikachucard.png" width="100%" /></td>
<td width="68%" style="padding-left: 20px; line-height: 1.3;">
<div style="margin-bottom: -20px">Goal: knock out 6 of your opponent's Pokรฉmon</div>
<ul>
<li>For this your use <b>attacks</b></li>
<li>Those attacks cost <b>energy</b></li>
<li>Each attack does <b>damage</b></li>
<li><b>HP</b> define the maximum damage before knock-out</li>
</ul>
</td>
</tr>
</table>
---
# ๐๏ธ Our approach
### .grey[Explanations interleaved with tasks]
1. Representing cards
2. Representing actions
3. Testing actions
--
## .grey[Domain-specific Language (DSL)]
Implementation of the _Ubiquitous Language_ idea from DDD, the code speaks the domain
---
# <img src="img/pikachu.png" width="32px" /> Representing cards
<table>
<tr>
<td style="vertical-align: top"><img src="img/pikachucard.png" width="100%" /></td>
<td width="68%" style="padding-left: 20px; line-height: 1.3;">
<div style="margin-bottom: -20px">Each card comes with...</div>
<ul style="margin-bottom: 20px">
<li>Name: <span class="remark-code-zoom">Pikachu</span></li>
<li>Type: <img src="img/energy/lightning.webp" height="32px" /></li>
<li>HP: 70</li>
<li>Attack(s)</li>
</ul>
(forget about the rest for now)
</td>
</tr>
</table>
---
# โ๏ธ Algebraic Data Types (ADTs)
<table style="font-size: 70%">
<tr>
<td style="vertical-align: top; text-align: right;"><img src="img/pikachucard.png" width="60%" /></td>
<td width="68%" style="padding-left: 20px; line-height: 1.3;">
<div style="margin-bottom: -20px">Each card comes with...</div>
<ul style="margin-bottom: 20px">
<li>Name: <span class="remark-code-zoom">Pikachu</span></li>
<li>Type: <img src="img/energy/lightning.webp" height="20px" /></li>
<li>HP: 70</li>
<li>Attack(s)</li>
</ul>
</td>
</tr>
</table>
Straightforward translation of the description
.code70[
```haskell
data Card = Card { name :: Text
, typ :: Energy
, hp :: Natural
, attacks :: [Attack] }
```
]
---
# โ๏ธ Algebraic Data Types (ADTs)
<table style="font-size: 70%">
<tr>
<td style="vertical-align: top; text-align: right;"><img src="img/pikachucard.png" width="60%" /></td>
<td width="68%" style="padding-left: 20px; line-height: 1.3;">
<div style="margin-bottom: -20px">Each card comes with...</div>
<ul style="margin-bottom: 20px">
<li>Name: <span class="remark-code-zoom">Pikachu</span></li>
<li>Type: <img src="img/energy/lightning.webp" height="20px" /></li>
<li>HP: 70</li>
<li>Attack(s)</li>
</ul>
</td>
</tr>
</table>
.code70[
```haskell
data Card = Card { name :: Text
, typ :: Energy
, hp :: HP
, attacks :: [Attack] }
newtype HP = HP Natural
deriving (Eq, Show, Num)
```
]
---
# โฏ๏ธ Energies
There are 10 types of energy in the game,
- 9 regular energies <img src="img/energy/grass.webp" width="32px" /> <img src="img/energy/fire.png" width="32px" /> <img src="img/energy/water.webp" width="32px" /> <img src="img/energy/lightning.webp" width="32px" /> <img src="img/energy/fighting.webp" width="32px" /> <img src="img/energy/psychic.webp" width="32px" /> <img src="img/energy/darkness.webp" width="32px" /> <img src="img/energy/metal.webp" width="32px" /> <img src="img/energy/dragon.webp" width="32px" />
- Colorless energy <img src="img/energy/colorless.webp" width="32px" />
- Any card providing a regular energy may also provide colorless energy
<img src="img/attack.png" height="48px" style="margin-top: 10px; margin-bottom: -10px;" /> = 2 <img src="img/energy/lightning.webp" width="32px" /> + 1 of any other
---
# โฏ๏ธ Energies
There are 10 types of energy in the game,
- 9 regular energies <img src="img/energy/grass.webp" width="32px" /> <img src="img/energy/fire.png" width="32px" /> <img src="img/energy/water.webp" width="32px" /> <img src="img/energy/lightning.webp" width="32px" /> <img src="img/energy/fighting.webp" width="32px" /> <img src="img/energy/psychic.webp" width="32px" /> <img src="img/energy/darkness.webp" width="32px" /> <img src="img/energy/metal.webp" width="32px" /> <img src="img/energy/dragon.webp" width="32px" />
- Colorless energy <img src="img/energy/colorless.webp" width="32px" />
.code70[
```haskell
data Energy = Colorless
| Grass | Fire | Water
| Lightning | Fighting | Psychic
| Darkness | Metal | Dragon
data Card = PokemonCard { ... }
| EnergyCard { typ :: Energy }
```
]
---
# โ๏ธ Attacks
We consider only "simple" attacks for now
<div style="text-align: center"><img src="img/attack.png" height="60px" /></div>
.code70[
```haskell
data Attack = Attack { attackName :: Text
, cost :: [Energy]
, damage :: Natural }
```
]
---
# ๐งโ๐ป Time for practice!
.very-little-margin-top[
### `serranofp.com/infofp.zip`
]
Define values for the following cards
<div style="margin-top: -20px">
<img src="img/grookeycard.png" width="40%" />
<img src="img/goomycard.png" width="40%" />
</div>
---
# โ๏ธ Attacks, redux
.code70[
```haskell
data Attack = Attack { ..., damage :: Natural }
```
]
## .grey[This is a ~~lie~~ simplification]
---
# โ๏ธ Attacks, redux
<img src="img/attack1.png" width="80%" />
<img src="img/attack2.png" width="80%" />
<img src="img/attack3.png" width="80%" />
<img src="img/attack4.png" width="80%" />
---
# โ๏ธ Attacks, redux
.code70[
```haskell
data Attack = Attack { ..., damage :: Natural }
```
]
## .grey[This is a ~~lie~~ simplification]
.top-margin[
- More actions than mere damage
- Draw and discard cards
- Actions may depend on the state
- Attached cards
- Coin flips
- Actions may involve conditionals and loops
]
---
# โ๏ธ Attacks, redux
.code70[
```haskell
data Attack = Attack { ..., action :: ??? }
```
]
## How do we model .grey[actions]?
.top-margin[
- More actions than mere damage
- Draw and discard cards
- Actions may depend on the state
- Attached cards
- Coin flips
- Actions may involve conditionals and loops
]
---
# ๐ช Coin flips
<img src="img/attack5.png" width="80%" />
.code70[
```haskell
data FlipOutcome = Heads | Tails
data Action
= FlipCoin (FlipOutcome -> Action)
| Damage Natural
surpriseAttackAction
= FlipCoin $ \case Heads -> Damage 30
Tails -> Damage 0
```
]
---
# ๐ช Coin flips
<img src="img/attack1.png" width="80%" />
## .grey[๐งโ๐ป Time for practice!] .font70[`serranofp.com/infofp.zip`]
---
# ๐ช Coin flips
<img src="img/attack1.png" width="80%" />
```haskell
ironTailAction = go 0
where
go acc = FlipCoin $ \case
Tails -> Damage acc
Heads -> go (acc + 30)
```
---
# ๐ง Syntax/algebra and interpretation
`Action` defines the **syntax** of our DSL <br /> (also known as **algebra** in some circles)
> "The language itself", "what we can say"
---
# ๐ง Syntax/algebra and interpretation
`Action` defines the **syntax** of our DSL <br /> (also known as **algebra** in some circles)
An **interpretation** defines how each value behaves in a certain context
> "What a sentence means"
1 syntax / algebra โท โ interpretations
---
# ๐ฐ Randomness interpretation
During the actual game, we expect to generate random coin flips to obtain the actual damage
```haskell
interpretRandom :: Action -> IO Natural
```
## .grey[๐งโ๐ป Time for practice!] .font70[`serranofp.com/infofp.zip`]
---
# ๐ฐ Randomness interpretation
During the actual game, we expect to generate random coin flips to obtain the actual damage
```haskell
interpretRandom :: Action -> IO Natural
interpretRandom (Damage d) = pure d
interpretRandom (FlipCoin f) = do
outcome <- flipCoin
interpretRandom (f outcome)
-- one-liner
-- flipCoin >>= interpretRandom . f
```
---
# ๐ด Actions about cards
<img src="img/attack2.png" width="80%" />
<img src="img/attack3.png" width="80%" />
<img src="img/attack4.png" width="80%" />
---
# ๐ด Actions about cards
.code70[
```haskell
data Action
= FlipCoin (FlipOutcome -> Action)
| DrawCard (Maybe Card -> Action)
-- ^ there may not be more cards
| QueryAttached ([Card] -> Action)
-- ^ get info. about the current Pokรฉmon
| Damage Natural
```
]
### .grey[Can you spot the pattern? ๐]
---
# ๐ด Actions about cards
.code70[
```haskell
data Action
= FlipCoin (FlipOutcome -> Action)
| DrawCard (Maybe Card -> Action)
-- ^ there may not be more cards
| QueryAttached ([Card] -> Action)
-- ^ get info. about the current Pokรฉmon
| Damage Natural
```
]
- `Damage` is a **final** action
- The rest "generate" a value, <br /> which is consumed to keep going
---
# ๐ด Actions about cards
<img src="img/attack4.png" width="80%" />
## .grey[๐งโ๐ป Time for practice!] .font70[`serranofp.com/infofp.zip`]
.margin-top[
1. Write a function to **draw *n* ** cards
2. Add an additional operation to **discard** cards
- Must include a predicate to select cards
- Outcome: whether a card was discarded
]
---
# ๐ด Actions about cards
## .grey[๐งโ๐ป Time for practice!] .font70[`serranofp.com/infofp.zip`]
Write a function to **draw *n* ** cards
_What should be the function signature?_
--
```haskell
drawN :: Natural -- amount
-> ([Card] -> Action) -- "next"
-> Action
drawN n next = _
```
---
# ๐ด Actions about cards
Write a function to **draw *n* ** cards
.code70[
```haskell
drawN n next = go n []
where
go n acc
| n <= 0
= next (reverse acc)
| otherwise
= DrawCard $ \case
Nothing -> next (reverse acc)
Just c -> go (n - 1) (c : acc)
```
]
---
# ๐ฉป Property-based testing
Generate many _random_ tests for the same function (or set of them)
Focus on **properties** rather than examples
- PBT frameworks are good at generating corner cases (extreme values, empty lists, ...)
---
# โ
Testing actions
### .grey[How can we test `ironTailAction`?]
<img src="img/attack1.png" width="80%" />
---
# โ
Testing actions
### .grey[How can we test `ironTailAction`?]
<img src="img/attack1.png" width="80%" />
- If we get a tail as first result, we get 0
- If our outcomes start with `n` heads, <br /> then the result is `30 * n`
---
# โ
Testing actions
### .grey[How can we test `ironTailAction`?]
<img src="img/attack1.png" width="80%" />
โ Using `interpretRandom` would not work
- The outcome is random
- Testing `IO` is cumbersome
---
# ๐งฎ Pure interpretation of flipping
We pass the future outcomes as a parameter
```haskell
interpretPure :: [FlipOutcome]
-> Action -> Natural
```
---
# ๐งฎ Pure interpretation of flipping
We pass the future outcomes as a parameter
```haskell
interpretPure :: [FlipOutcome]
-> Action -> Natural
```
Now we control the future ๐ฎ
```haskell
> interpretPure [Heads, Heads, Tails]
ironTailAction
60
```
---
# ๐งฎ Pure interpretation of flipping
.code70[
```haskell
interpretPure :: [FlipOutcome]
-> Action -> Natural
interpretPure (result : future) (FlipCoin next) =
interpretPure future (next result)
interpretPure _future (Damage n) = n
```
]
---
# ๐ QuickCheck + Tasty ๐ฅง
**QuickCheck** is a well-known library for property-based testing
- Define properties of functions
- Support for custom generators
**Tasty** is a test runner
- Runs and reports over a set of tests
---
# ๐ QuickCheck + Tasty ๐ฅง
๐ฅง `testGroup` + ๐ `testProperty`
- `outcomes` is randomly selected
.code70[
```haskell
tests :: TestTree
tests = testGroup "Iron Tail"
[ testProperty "non-negative" $ \outcomes ->
interpretPure (outcomes ++ [Tails])
ironTailAction >= 0
, ... ]
```
]
---
# โ A wrong property
```haskell
interpretPure ... ironTailAction > 0
```
A counter-example is found by QuickCheck
.code70[
```
Iron Tail
non-negative: FAIL
*** Failed! Falsified (after 1 test):
[]
Use --quickcheck-replay=139730 to reproduce.
Use -p '/non-negative/' to rerun this test only.
```
]
---
# <img src="img/pikachu.png" width="32px" /> The "times 30" property
To create good properties you must...
- Be creative with the inputs
- Ensure that inputs are correct
.code70[
```haskell
testProperty "30 * # heads" $ \(hs :: Int) ->
hs > 0 ==>
let outcomes = replicate hs Heads ++ [Tails]
in interpretPure outcomes ironTailAction
== fromIntegral (hs * 30)
```]
---
class: center, middle, title-slide
count: false
# ๐ป Spooky slides ahead
---
# ๐ This is terrible
<img src="img/attack1.png" width="80%" />
```haskell
ironTailAction = go 0
where
go acc = FlipCoin $ \case
Tails -> Damage acc
Heads -> go (acc + 30)
```
---
# ๐ This reads better
<img src="img/attack1.png" width="80%" />
```haskell
ironTailAction = do
heads <- while (/= Tails) flipCoin
return (30 * length heads)
```
--
## We are building our own .grey[language]
---
# ๐ง Monads!
```haskell
data Action
= FlipCoin (FlipOutcome -> Action)
| Damage Natural
```
Why is it **not** possible to write `Monad` for this?
--
`Monad` applies to .grey[**type constructors**]
- We need to turn this into `Action a`
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
```
--
## .grey[๐งโ๐ป Time for practice!] .font70[`serranofp.com/infofp.zip`]
Write the `Monad Action` instance
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return = _
x >>= f = _
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
-- a -> Action a
return = _
x >>= f = _
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
-- a โฐ โฑ Action a
return x = _
x >>= f = _
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
-- a โฐ โฑ Action a
return x = Return x
x >>= f = _
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
-- Action a -> (a -> Action b) -> Action b
x >>= f = _
```
--
Pattern matching on `Action` keeps us going
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
-- a โฐ โฑ (a -> Action b)
Return x >>= f = _ -- Action b
FlipCoin next >>= f = _
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
-- a โฐ โฑ (a -> Action b)
Return x >>= f = f x -- Action b
FlipCoin next >>= f = _
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
Return x >>= f = f x -- Action b
-- FlipCoin -> Action a
-- โ โฑ (a -> Action b)
FlipCoin next >>= f = _
```
--
We are mixing two blocks of actions
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
Return x >>= f = f x -- Action b
-- FlipCoin -> Action a
-- โ โฑ (a -> Action b)
FlipCoin next >>= f = FlipCoin _
-- FlipCoin -> Action b โต
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
Return x >>= f = f x -- Action b
-- FlipCoin -> Action a
-- โ โฑ (a -> Action b)
FlipCoin next >>= f =
FlipCoin (\oc -> _ :: Action b)
```
---
# ๐ง Monads!
```haskell
data Action a
= FlipCoin (FlipOutcome -> Action a)
| Return a -- "ends" the computation
instance Monad Action where
return x = Return x
Return x >>= f = f x -- Action b
-- FlipCoin -> Action a
-- โ โฑ (a -> Action b)
FlipCoin next >>= f =
FlipCoin (\oc -> next oc >>= f)
```
---
# ๐ฎโ๐จ What have we gained?
Being a `Monad` gives you `do` notation
```haskell
flipCoin :: Action FlipOutcome
flipCoin = FlipCoin Return
flipTwo = do
x <- flipCoin
y <- flipCoin
if (x == Heads && y == Heads)
then return 50 else return 0
```
---
# ๐ฎโ๐จ What have we gained?
Being a `Monad` gives you `do` notation
```haskell
flipTwo =
FlipCoin $ \oc1 ->
FlipCoin $ \oc2 ->
if (oc1 == Heads && oc2 == Heads)
then Return 50 else Return 0
```
No need to handle constructors manually!
---
# ๐ฎโ๐จ What have we gained?
Being a `Monad` gives you access to many others
- Everything in `Control.Monad`
- `Control.Monad.Extra` in `extra`
- `monad-loops`
--
```haskell
ironTailAction = do
heads <- while (/= Tails) flipCoin
return (30 * length heads)
```
---
# ๐ Summary
### .grey[Haskell is a great language for DSLs]