-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_linear_probe_fd.py
executable file
·227 lines (207 loc) · 10.5 KB
/
run_linear_probe_fd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import argparse
import numpy as np
import timm
import wandb
from tqdm import tqdm
import cv2
import torch
import pandas as pd
from pathlib import Path
#from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR, CosineAnnealingWarmRestarts
from torch.utils.data import Subset, DataLoader
import torchvision.datasets as datasets
from torchvision.transforms import Compose, ToTensor, Normalize, Resize, InterpolationMode
from src.perspective_data import PerspectiveDataset, FeaturesDataset
from src.models import LinearModel, LinearModelMulti
from src.utils import binary_accuracy, accuracy, CosineAnnealingWithWarmup, get_args_parser, get_transform_wo_crop, get_foundation_model
import json
def extract_features_dpt(device, split, args):
model, transform = get_foundation_model(args.model_name, args)
csv_name = split + f'_{args.task}_balanced.csv'
# if split == 'train':
# if args.flip:
# data_path = os.path.join(args.data_dir, 'train_flip')
# else:
# data_path = os.path.join(args.data_dir, 'train')
if split == 'train':
data_path = os.path.join(args.data_dir, 'train')
elif split == 'val':
data_path = os.path.join(args.data_dir, 'train')
else:
data_path = os.path.join(args.data_dir, 'test')
label_csv = os.path.join(args.data_dir, csv_name)
img_labels = pd.read_csv(label_csv).to_numpy()
features = []
labels_list = []
for idx in tqdm(range(len(img_labels))):
img_path = os.path.join(data_path, img_labels[idx, 0])
labels = img_labels[idx, 1]
raw_image = cv2.imread(img_path)
image = cv2.cvtColor(raw_image, cv2.COLOR_BGRA2RGB) / 255.0
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0).to(device)
with torch.no_grad():
feature = model(image)
feature = feature[3][0]
feature = torch.mean(feature, 1).detach().cpu()
features.append(feature)
labels_list.append(labels)
features = torch.cat(features)
labels = torch.Tensor(labels_list).squeeze()
return features, labels
def extract_features(model, data_loader, device):
model.eval()
features = []
labels_list = []
for data in tqdm(data_loader):
images, labels = data
images = images.to(device)
labels = labels.to(device)
with torch.no_grad():
preds = model(images)
if len(preds.shape)>3:
preds = torch.mean(preds, (2, 3))
#preds = torch.flatten(preds, start_dim=1)
elif len(preds.shape)>2:
preds = torch.mean(preds, 2)
features.append(preds.cpu())
labels_list.append(labels.cpu())
features = torch.cat(features)
labels = torch.cat(labels_list).squeeze()
return features, labels
def train_linear_probe(model, train_loader, test_loader, val_loader, human_loader, criterion, optimizer, lr_scheduler, device, args):
best_acc_val = 0
best_acc_train = 0
best_acc_human = 0
best_acc_test = 0
for epoch in tqdm(range(args.epochs)):
model.train()
epoch_acc = []
epoch_loss = []
for i, batch in enumerate(train_loader):
features, labels = batch
features = features.to(device)
labels = labels.float().to(device)
labels = torch.unsqueeze(labels, 1)
optimizer.zero_grad()
preds = model(features)
loss = criterion(preds, labels)
loss.backward()
optimizer.step()
#lr_scheduler.step()
#acc = accuracy(preds,labels)[0]
acc = binary_accuracy(preds, labels)
epoch_acc.append(acc)
epoch_loss.append(loss.item())
with torch.no_grad():
test_acc, test_loss = evaluate_linear_probe(model, test_loader, criterion, device, args)
val_acc, val_loss = evaluate_linear_probe(model, val_loader, criterion, device, args)
human_acc, human_loss = evaluate_linear_probe(model, human_loader, criterion, device, args)
train_acc = sum(epoch_acc)/float(len(epoch_acc))
if val_acc > best_acc_val:
best_acc_val = val_acc
best_acc_train = train_acc
best_acc_test = test_acc
best_acc_human = human_acc
if args.wandb:
wandb.log({'train_acc':sum(epoch_acc)/float(len(epoch_acc)), 'train_loss':sum(epoch_loss)/float(len(epoch_loss)),
'val_acc':val_acc, 'val_loss':val_loss, 'human_acc':human_acc, 'human_loss':human_loss, 'test_acc':test_acc, 'test_loss':test_loss})
return best_acc_train, best_acc_test, best_acc_val, best_acc_human
def evaluate_linear_probe(model, data_loader, criterion, device, args):
model.eval()
epoch_loss = []
preds_list = []
labels_list = []
for i, batch in enumerate(data_loader):
features, labels = batch
features = features.to(device)
labels = labels.float().to(device)
labels = torch.unsqueeze(labels, 1)
preds = model(features)
loss = criterion(preds, labels)
preds_list.append(preds)
labels_list.append(labels)
epoch_loss.append(loss.item())
preds = torch.cat(preds_list).squeeze()
labels = torch.cat(labels_list).squeeze()
epoch_acc = binary_accuracy(preds, labels)
return epoch_acc, sum(epoch_loss)/float(len(epoch_loss))
def run_extract_features(args):
device = torch.device(f'cuda:{args.gpu_id}')
model = get_foundation_model(args.model_name)
transform = Compose([
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,0.224,0.225]),
Resize(512, interpolation=InterpolationMode.NEAREST)])
if not args.flip:
train_dataset = datasets.ImageFolder(os.path.join(args.data_dir, 'train'), transform=transform)
else:
train_dataset = datasets.ImageFolder(os.path.join(args.data_dir, 'train_flip'), transform=transform)
test_dataset = datasets.ImageFolder(os.path.join(args.data_dir, 'test'), transform=transform)
val_dataset = datasets.ImageFolder(os.path.join(args.data_dir, 'val'), transform=transform)
human_dataset = PerspectiveDataset(Path(args.data_dir).parent, transforms=transform, split='human', task=args.task)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=False)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True)
human_loader = DataLoader(human_dataset, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True)
model = model.to(device)
train_features, train_labels = extract_features(model, train_loader, device)
test_features, test_labels = extract_features(model, test_loader, device)
val_features, val_labels = extract_features(model, val_loader, device)
human_features, human_labels = extract_features(model, human_loader, device)
return train_features, train_labels, test_features, test_labels, val_features, val_labels, human_features, human_labels
def run_linear_probe(args):
if args.wandb:
wandb_run = wandb.init(project='gs-perception-linear-probe',
config={
"learning_rate": args.learning_rate,
"architecture": args.model_name,
"epochs": args.epochs,
} )
device = torch.device(f'cuda:{args.gpu_id}')
if args.model_name == 'depth_anything':
train_features, train_labels = extract_features_dpt(device, 'train', args)
test_features, test_labels = extract_features_dpt(device, 'test', args)
val_features, val_labels = extract_features_dpt(device, 'val', args)
human_features, human_labels = extract_features_dpt(device, 'human', args)
else:
train_features, train_labels, test_features, test_labels, val_features, val_labels, human_features, human_labels = run_extract_features(args)
train_feat_dataset = FeaturesDataset(train_features, train_labels)
test_feat_dataset = FeaturesDataset(test_features, test_labels)
val_feat_dataset = FeaturesDataset(val_features, val_labels)
human_feat_dataset = FeaturesDataset(human_features, human_labels)
train_feat_loader = DataLoader(train_feat_dataset, batch_size=args.batch_size,
num_workers=args.num_workers, shuffle=True, drop_last=True)
test_feat_loader = DataLoader(test_feat_dataset, batch_size=args.batch_size,
num_workers=args.num_workers)
val_feat_loader = DataLoader(val_feat_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
human_feat_loader = DataLoader(human_feat_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
criterion = torch.nn.BCEWithLogitsLoss()
steps_per_epoch = len(train_feat_loader)
linear_model = LinearModel(train_features.shape[-1], args.num_classes, args.dropout_rate)
optimizer = torch.optim.AdamW(linear_model.parameters(), lr=args.learning_rate,
weight_decay=args.weight_decay, amsgrad=False)
lr_scheduler = None
linear_model = linear_model.to(device)
best_acc_train, best_acc_test, best_acc_val, best_acc_human = train_linear_probe(linear_model, train_feat_loader, test_feat_loader, val_feat_loader, human_feat_loader, criterion, optimizer, lr_scheduler, device, args)
print("Best acc validation", best_acc_val)
print("Best acc train", best_acc_train)
print("Best acc human", best_acc_human)
if args.task == 'perspective':
log_file = 'logs/perspective_results_fd.json'
else:
log_file = 'logs/depth_results_fd.json'
with open(log_file, 'r') as f:
results = json.load(f)
results[args.model_name] = [best_acc_train, best_acc_test, best_acc_val, best_acc_human]
print(results)
with open(log_file, 'w') as f:
results_json = json.dumps(results, indent=4)
f.write(results_json)
print('wrote results to ', log_file)
if args.wandb:
wandb_run.finish()
if __name__ == "__main__":
args = get_args_parser().parse_args()
run_linear_probe(args)