-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory_analysis.py
171 lines (144 loc) · 5.03 KB
/
memory_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
import os
import tensorflow as tf
import matplotlib.pyplot as plt
from math import ceil
from sklearn.decomposition import NMF
import cv2
import xplique
from xplique.features_visualizations import Objective
from xplique.features_visualizations import maco
# from xplique.plot import plot_maco
from tqdm import tqdm
import shutil
print("Num GPUs Available: ", len(tf.config.list_physical_devices("GPU")))
fossils_dir = (
"/cifs/data/tserre_lrs/projects/prj_fossils/data/2024/Florissant_Fossil_v2.0"
)
leaves_dir = "/cifs/data/tserre_lrs/projects/prj_fossils/data/2024/Extant_Leaves"
plot_save_dir = (
"/cifs/data/tserre_lrs/projects/prj_fossils_xai/concepts/fossils_concept"
)
plot_leaves_save_dir = (
"/cifs/data/tserre_lrs/projects/prj_fossils_xai/concepts/leaves_concept"
)
save_feature_viz = "/cifs/data/tserre_lrs/projects/prj_fossils_xai/maco/fossils_viz"
save_leaves_feature_viz = (
"/cifs/data/tserre_lrs/projects/prj_fossils_xai/maco/leaves_viz"
)
mask_dir = "/cifs/data/tserre_lrs/projects/prj_fossils_xai/mask_images_all_leaves2"
model_path = "/cifs/data/tserre_lrs/projects/prj_fossils_xai/new_models/model-14_RESNET_101_TRIPLET.h5"
classes = [
"Anacardiaceae",
"Berberidaceae",
"Betulaceae",
"Cupressaceae",
"Dryopteridaceae",
"Fabaceae",
"Fagaceae",
"Juglandaceae",
"Lauraceae",
"Meliaceae",
"Myrtaceae",
"Pinaceae",
"Rhamnaceae",
"Rosaceae",
"Salicaceae",
"Sapindaceae",
]
def disk_usage(dir, classes):
total_images = 0
for cls in classes:
class_dir = os.path.join(dir, cls)
total_images += len(os.listdir(class_dir))
print(total_images)
disk_usage(leaves_dir, classes)
import ipdb
ipdb.set_trace()
cce = tf.keras.losses.categorical_crossentropy
model = tf.keras.models.load_model(model_path, custom_objects={"cce": cce})
print(model.summary())
features = tf.keras.Model(model.input, model.layers[-5].output)
def load_fossils_dir(class_name, fossils_dir):
class_dir = os.path.join(fossils_dir, class_name)
paths = os.listdir(class_dir)
fossils = []
count = 0
for p in paths:
fossils_path = os.path.join(class_dir, p)
img = cv2.imread(fossils_path)[..., ::-1]
img = img.astype(np.float32)
fossils.append(img)
count += 1
print(f"total images: {count}")
return fossils
def load_leaves_dir(class_name, leaves_dir, mask_dir):
mask_dir = os.path.join(mask_dir, class_name)
leaves_dir = os.path.join(leaves_dir, class_name)
paths = os.listdir(mask_dir)
masked_imgs = []
imgs = []
count = 0
for p in paths[:100]:
mask_path = os.path.join(mask_dir, p)
mask = cv2.imread(mask_path) / 225.0
img = cv2.imread(image_dir + "/" + p)[..., ::-1]
img = img.astype(np.float32)
image = img * (mask > 0.1).astype(np.float32)
masked_imgs.append(image)
imgs.append(img)
count += 1
print(f"total images: {count}")
return imgs, masked_imgs
def generate_square_crops(image, crop_size=1000):
height, width, _ = image.shape
crops = []
y_steps = ceil(height / crop_size)
x_steps = ceil(width / crop_size)
threshold = 0.9
for y in range(y_steps):
for x in range(x_steps):
start_y = y * crop_size
end_y = min(start_y + crop_size, height)
start_x = x * crop_size
end_x = min(start_x + crop_size, width)
# If we are at the end, take more from the other side
if end_y - start_y < crop_size:
start_y = max(0, end_y - crop_size)
if end_x - start_x < crop_size:
start_x = max(0, end_x - crop_size)
crop = image[start_y:end_y, start_x:end_x, :]
crops.append(crop)
return np.array(crops)
def preprocess(x):
return x / 255.0
for i in range(len(classes)):
class_id = 0
nb_concepts = 40
CROPS = []
ACTIVATIONS = []
class_save_dir_c = os.path.join(plot_save_dir, classes[class_id], "coalesce")
class_save_dir_ind = os.path.join(plot_save_dir, classes[class_id], "individual")
class_viz_dir = os.path.join(save_feature_viz, classes[class_id])
os.makedirs(class_save_dir_c, exist_ok=True)
os.makedirs(class_save_dir_ind, exist_ok=True)
os.makedirs(class_viz_dir, exist_ok=True)
print(f"Fossils Dir: {fossils_dir}")
print(f"Plot Dir: {plot_save_dir}")
print(f"Class Save Dir: {class_save_dir_c}")
print(f"class save dir ind: {class_save_dir_ind}")
print(f"ViZ dir: {class_viz_dir}")
X = load_fossils_dir(classes[class_id], fossils_dir)
count = 0
for i, x in enumerate(X):
crops = generate_square_crops(x)
crops = tf.image.resize(crops, (384, 384))
CROPS += list(crops.numpy().astype(np.uint8))
crops = preprocess(crops)
activations = features(crops)
ACTIVATIONS += list(activations.numpy())
count += 1
ACTIVATIONS = np.array(ACTIVATIONS)
CROPS = np.array(CROPS)
print(ACTIVATIONS.shape)
np.save("activations2/activations.npy", ACTIVATIONS)