This repository was archived by the owner on Jul 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
415 lines (338 loc) · 14.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import os
import re
import time
from datetime import datetime, timedelta
import gspread as gs
import pandas as pd
import pytz
import requests
from bs4 import BeautifulSoup
from gspread_dataframe import set_with_dataframe
# We grab our service account from a Github secret
SERVICE_ACCOUNT = os.environ.get("SERVICE_ACCOUNT")
ACCESS_TOKEN = os.environ.get("ACCESS_TOKEN")
# Create a temporary json file based on the SERVICE_ACCOUNT env variable
with open("service_account.json", "w") as f:
f.write(SERVICE_ACCOUNT)
# We authenticate with Google using the service account json we created earlier.
gc = gs.service_account(filename="service_account.json")
market_info = {
"San Francisco": {
"Google spreadsheet": "https://docs.google.com/spreadsheets/d/1_ZMnD69rrVH53194HWHUoHfKnK0yq5gJ6J83dGWle5E/edit#gid=0",
"Directory worksheet": "SFC directory",
"Database worksheet": "SFC DB",
"Metadata worksheet": "SFC meta",
"timezone": "US/Pacific",
}
}
def create_time_stamp(timezone):
"""
Simple function to create a time stamp for the metadata worksheet.
"""
# Save the current time as a string in the following format: YYYY-MM-DD
date = datetime.now(pytz.timezone(timezone)).strftime("%Y-%m-%d")
# Save the current time in 12-hour format as a string in the following format: HH:MM AM/PM
time = datetime.now(pytz.timezone(timezone)).strftime("%-I:%M %p")
# Find the time one hour from now
next_run = datetime.now(pytz.timezone(timezone)) + timedelta(hours=1)
return date, time, next_run
def api_call_handler(func):
"""
This function will retry the api call if it fails.
"""
# Number of retries
for i in range(0, 10):
try:
return func()
except Exception as e:
print(f"🤦♂️ {e}")
print(f"🤷♂️ Retrying in {2 ** i} seconds...")
time.sleep(2**i)
print("🤬 Giving up...")
raise SystemError
def process_market_directory(url, directory, db, timezone, metadata):
"""
This function processes the market directory and updates the market database. It's the main function. It calls all the other necessary functions.
"""
# Open the main market_spreadsheet and store the worksheets and dataframes
(
market_spreadsheet,
market_directory_ws,
market_database_ws,
market_metadata_ws,
market_directory_df,
market_database_df,
market_metadata_df,
) = open_market_spreadsheet(url, directory, db, metadata)
updated_market_database_df = pd.DataFrame()
# Loop through each GUIDE in the market_directory_df
for index, row in market_directory_df.iterrows():
print(f'🥡 Working on {row["Guide name"]}...')
# Open the guide spreadsheet and store the worksheets and dataframes
(
restaurant_listings_df,
restaurant_nav_df,
story_settings_df,
) = open_guide_spreadsheet(row["C2P Sheet URL"], row["Guide name"])
live_page_df = scrape_live_guide(
row["Live URL"], row["Guide name"], row["C2P Sheet URL"]
)
# Dedupe the restaurant_nav_df
restaurant_nav_df = restaurant_nav_df.drop_duplicates(subset=["Listing_Id"])
# Join the restaurant_nav_df to the live_page_df on the "Listing_Id" column. From the restaurant_nav_df, I only want the Lat and Lng columns.
live_page_df = live_page_df.join(
restaurant_nav_df[["Listing_Id", "Lat", "Lng"]].set_index("Listing_Id"),
on="Listing_Id",
)
# Concateenate the live_page_df to the updated_market_database_df
updated_market_database_df = pd.concat(
[updated_market_database_df, live_page_df]
)
# Sort the updated_market_database_df by the Display_Name column
updated_market_database_df = updated_market_database_df.sort_values(
by=["Display_Name"]
)
# Clear the market_database_ws
market_database_ws.clear()
set_with_dataframe(market_database_ws, updated_market_database_df)
# Get the current time and date
date, time, next_run = create_time_stamp(timezone)
# Rewrite the above updates to be in one batch call
market_metadata_ws.batch_update(
[
{"range": "B1", "values": [[date]]},
{"range": "B2", "values": [[time]]},
{"range": "B3", "values": [[next_run.strftime("%-I:%M %p")]]},
]
)
def open_market_spreadsheet(url, directory, db, metadata):
"""
This function opens each market's main spreadsheet and returns the worksheets and dataframes.
"""
print("📂 Opening market spreadsheet...")
# Open the main spreadsheet
market_spreadsheet = api_call_handler(lambda: gc.open_by_url(url))
# Open the directory and database worksheets contained in the main market_spreadsheet
market_directory_ws = api_call_handler(
lambda: market_spreadsheet.worksheet(directory)
)
market_database_ws = api_call_handler(lambda: market_spreadsheet.worksheet(db))
market_metadata_ws = api_call_handler(
lambda: market_spreadsheet.worksheet(metadata)
)
# Store the directory and database worksheets in pandas dataframes
market_directory_df = api_call_handler(
lambda: pd.DataFrame(market_directory_ws.get_all_records())
)
market_database_df = api_call_handler(
lambda: pd.DataFrame(market_database_ws.get_all_records())
)
market_metadata_df = api_call_handler(
lambda: pd.DataFrame(market_metadata_ws.get_all_records())
)
# Return the worksheets and dataframes
return (
market_spreadsheet,
market_directory_ws,
market_database_ws,
market_metadata_ws,
market_directory_df,
market_database_df,
market_metadata_df,
)
def open_guide_spreadsheet(url, name):
"""
This function opens the guide spreadsheet and returns the three dataframes.
"""
# print('🍑 Opening guide spreadsheet...')
# Open the guide spreadsheet
guide_spreadsheet = api_call_handler(lambda: gc.open_by_url(url))
# guide_worksheets = guide_spreadsheet.values_batch_get(
# ranges=["listings!A1:Z1000", "nav!A1:Z1000", "story_settings!A1:Z1000"]
# )
guide_worksheets = api_call_handler(
lambda: guide_spreadsheet.values_batch_get(
ranges=["listings!A1:Z1000", "nav!A1:Z1000", "story_settings!A1:Z1000"]
)
)
guide_worksheets = guide_worksheets["valueRanges"]
# Loop through the worksheets in the spreadsheet_dict. Add the values to the appropriate dataframe
for n, worksheet in enumerate(guide_worksheets):
# The first worksheet is the listings worksheet
if n == 0:
restaurant_listings_df = pd.DataFrame(worksheet["values"])
# Make the first row the header
restaurant_listings_df.columns = restaurant_listings_df.iloc[0]
# The second worksheet is the nav worksheet
elif n == 1:
restaurant_nav_df = pd.DataFrame(worksheet["values"])
# Make the first row the header
restaurant_nav_df.columns = restaurant_nav_df.iloc[0]
# The third worksheet is the story_settings worksheet
elif n == 2:
story_settings_df = pd.DataFrame(worksheet["values"])
# Make the first row the header
story_settings_df.columns = story_settings_df.iloc[0]
# Return the three dataframes
return restaurant_listings_df, restaurant_nav_df, story_settings_df
def getSoup(url):
"""
This function returns the BeautifulSoup object for the given URL.
"""
headers = {"x-px-access-token": ACCESS_TOKEN}
page = requests.get(url, headers=headers)
soup = BeautifulSoup(page.content, "html.parser")
return soup
def scrape_live_guide(url, guide_name, c2p_sheet_url):
"""
This function scrapes the live guide and returns a dataframe with the scraped data.
"""
soup = getSoup(url)
places = soup.find_all("div", class_="place")
place_data = []
for place in places:
# The main image is in an img tag with a class of image-gallery-image. Scrape the src attribute of the first one.
image = place.find_all("img", class_="image-gallery-image")
img_src_list = []
alt_text_list = []
credits_list = []
if image:
for img in image:
# Use the following regex to extract the wcm_id from the src attribute: \/(\d{5,})\/
wcm_id = re.search(r"\/(\d{5,})\/", img["src"]).group(1)
img_src_list.append(wcm_id)
# The alt text is in the alt attribute.
if img["alt"]:
alt_text_list.append(img["alt"])
else:
alt_text_list.append("")
# The credits are in a span with a class of image-gallery-description
credits = img.find_next("span", class_="image-gallery-description")
if credits:
credits = credits.text.strip()
else:
credits = ""
credits_list.append(credits)
# Join the list of images into a string separated by semicolons.
image_src = "; ".join(img_src_list)
# Join the list of alt text into a string separated by semicolons.
alt_text = "; ".join(alt_text_list)
if alt_text == "; ; ":
alt_text = None
# Join the list of credits into a string separated by semicolons.
credits = "; ".join(credits_list)
# Find all the label elements in the place. Ignore ones that contain a span.
label_list = place.find_all("label")
# Extract the text from each label. Keep in list.
label_list = [
label.text.strip() for label in label_list if not label.find("span")
]
# Grab the div that has a class that starts with listing-module--details. This contains the address and description.
details = place.find("div", class_=re.compile("listing-module--details"))
# In the details div, find the p tag that contains the words "Payment Options". The next span contains the payment options.
payment_options = details.find("span", string=re.compile("Payment options"))
# If there are payment options, extract the text from the next span.
if payment_options:
payment_options = payment_options.find_next("span").text.strip()
else:
payment_options = ""
# If there are Drinks, extract the text from the next span.
drinks = details.find("span", string=re.compile("Drinks"))
if drinks:
drinks = drinks.find_next("span").text.strip()
else:
drinks = ""
# If there are Hours, extract the text from the next span.
hours = details.find("span", string=re.compile("Hours"))
if hours:
hours = hours.find_next("span").text.strip()
else:
hours = ""
# If there is Phone, extract the text from the next span.
phone = details.find("span", string=re.compile("Phone"))
if phone:
phone = phone.find_next("span").text.strip()
else:
phone = ""
# If there is Website, extract the href from the current span.
website = details.find("span", string=re.compile("Website"))
if website:
website = website.find("a")["href"]
else:
website = ""
# If there is Order online, extract the href from the current span.
order_online = details.find("span", string=re.compile("Order online"))
if order_online:
order_online = order_online.find("a")["href"]
else:
order_online = ""
# If there is More coverage, extract the href from the current span.
more_coverage = details.find("span", string=re.compile("More coverage"))
if more_coverage:
more_coverage = more_coverage.find("a")["href"]
else:
more_coverage = ""
# If there is Read the full review, extract the href from the current span.
read_the_full_review = details.find(
"span", string=re.compile("Read the full review")
)
if read_the_full_review:
read_the_full_review = read_the_full_review.find("a")["href"]
else:
read_the_full_review = ""
# Get the ID of the current place div
Listing_Id = place["id"]
address = place.find("div", itemprop="address")
if address:
address = address.text.strip()
else:
address = "Location varies"
place_data.append(
{
"Display_Name": place.find("h2").text.strip(),
"Listing_Id": Listing_Id,
"Location": address,
"Text_plain": place.find("div", itemprop="description").text.strip(),
"text_rich": place.find("div", itemprop="description")
.decode_contents()
.strip(),
"Images": image_src,
"Alt_Text": alt_text,
"Credits": credits,
"Takeout": "Takeout" in label_list,
"Delivery": "Delivery" in label_list,
"Outdoor seating": "Outdoor seating" in label_list,
"Indoor seating": "Indoor seating" in label_list,
"Vegetarian options": "Vegetarian options" in label_list,
"Top 25 restaurant": "Top 25 restaurant" in label_list,
"Payment options": payment_options,
"Drinks": drinks,
"Hours": hours,
"Phone": phone,
"Website": website,
"Order online": order_online,
"Related story": more_coverage,
"Review link": read_the_full_review,
"Guide name": guide_name,
"Live URL": url,
"C2P Sheet URL": c2p_sheet_url,
}
)
# Create a dataframe from the list of dictionaries.
guide_df = pd.DataFrame(place_data)
return guide_df
# Loop through the market_info dictionary
for market, info in market_info.items():
# Print the print the market name and its corresponding Google spreadsheet URL
print(f"🏙️ Working on {market}!")
process_market_directory(
info["Google spreadsheet"],
info["Directory worksheet"],
info["Database worksheet"],
info["timezone"],
info["Metadata worksheet"],
)
# time.sleep(10)
print("👍 Done!")
# Remove the temporary json file. We don't anyone to see our service account credentials!
os.remove("service_account.json")