-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
114 lines (93 loc) · 3.88 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as nm
from sfepy.base.base import Struct, debug
import os.path as osp
def get_output_base(pb):
return osp.join(pb.conf.options.output_dir,
osp.split(pb.domain.name)[-1])
def get_material_prop(ev, keys=['K', 'A', 'B', 'M'], mode=''):
out = {}
for k in keys:
out[k] = ev('ev_volume_integrate_mat.i.Omega(hom.%s%s, p)' % (mode, k),
mode='el_avg')
return out
def get_recovery_regions(regs):
eregs = []
for reg in regs:
if reg.name[:6] == 'el_out':
eregs.append(reg.name)
return eregs
def init_out_data(regs, tstep, keys=['E', 'w', 'p_e', 'A', 'B', 'M', 'Ke']):
data_out = {}
el_out = []
for jj, reg in enumerate(get_recovery_regions(regs)):
cid = regs[reg].get_cells(0)
el_out.append(cid)
for k in keys:
data_out['%s_%d' % (k, cid)] = []
el_out.sort()
data_out['el_idxs'] = el_out
data_out['n_iter'] = []
data_out['time'] = tstep.times
return data_out
def append_out_data(out, data, niter=0,
keys=['E', 'w', 'p_e', 'A', 'B', 'M', 'K']):
for el in out['el_idxs']:
ekey = '_%d' % el
for k in keys:
val = data[k][0] if type(data[k]) is tuple else data[k]
n = nm.prod(val.shape)
out[k + ekey].append(val.reshape(n,))
out['n_iter'].append(niter)
def write_macro_fields(fname, data, mesh):
vtkout = {}
for k in data.keys():
val, vn, flag = data[k]
if len(val.shape) > 3 and (val.shape[3] > val.shape[2]):
val = val.transpose((0, 1, 3, 2))
if flag == 'v' and val.shape[0] > mesh.n_nod:
val = val[:mesh.n_nod, ...]
vtkout[k] = Struct(name='output_data',
mode='cell' if flag == 'c' else 'vertex',
dofs=None, var_name=vn, data=val)
# debug()
print("----STEP SAVED----")
mesh.write(fname, out=vtkout)
#Method for evaluating macroscopic quantities
def eval_macro(pb, args, is_steady=False):
mode = 'el_avg'
vs = pb.create_variables(args.keys())
for ii in args.keys():
vs[ii].set_data(args[ii])
ev = pb.evaluate
out = {}
if not is_steady:
out['u'] = (args['U'].reshape((vs['U'].n_nod, vs['U'].n_components)),
None, 'v')
out['p'] = (args['P'].reshape((vs['P'].n_nod, 1)), None, 'v')
out['w1'] = (args['W1'].reshape((vs['W1'].n_nod, vs['W1'].n_components)),
None, 'v')
out['w2'] = (args['W2'].reshape((vs['W2'].n_nod, vs['W2'].n_components)),
None, 'v')
# evaluate cauchy strain tensor in cells
out['E'] = (ev('ev_cauchy_strain.i.Omega(U)',
var_dict={'U': vs['U']}, mode=mode), None, 'c')
# evaluate pressure field in cells
out['p_e'] = (ev('ev_volume_integrate.i.Omega(P)',
var_dict={'P': vs['P']}, mode=mode), None, 'c')
# evaluate pressure gradient in cells
out['grad_p'] = (ev('ev_grad.i.Omega(P)',
var_dict={'P': vs['P']}, mode=mode), None, 'c')
else:
out['w1'] = (args['w1'].reshape((vs['w1'].n_nod, vs['w1'].n_components)),
None, 'v')
out['w2'] = (args['w2'].reshape((vs['w2'].n_nod, vs['w2'].n_components)),
None, 'v')
out['u'] = (args['u'].reshape((vs['u'].n_nod, vs['u'].n_components)),
None, 'v')
out['p'] = (args['p'].reshape((vs['p'].n_nod, 1)), None, 'v')
nm.save(pb.conf.options.output_dir + "/p0", args['p'].reshape((vs['p'].n_nod, 1)))
nm.save(pb.conf.options.output_dir + "/u0", args['u'].reshape((vs['u'].n_nod, vs['u'].n_components)))
if hasattr(pb.conf.options, 'poroela_eval_macro_hook'):
hook = pb.conf.options.poroela_eval_macro_hook
out.update(hook(pb, args))
return out