forked from tan2/DynEarthSol-old
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry.cxx
515 lines (438 loc) · 16.2 KB
/
geometry.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#include <cmath>
#include <limits>
#include <iostream>
#ifdef USE_OMP
#include "omp.h"
#endif
#include "constants.hpp"
#include "parameters.hpp"
#include "matprops.hpp"
#include "utils.hpp"
#include "geometry.hpp"
/* Given two points, returns the distance^2 */
double dist2(const double* a, const double* b)
{
double sum = 0;;
for (int i=0; i<NDIMS; ++i) {
double d = b[i] - a[i];
sum += d * d;
}
return sum;
}
/* Given four 3D points, returns the (signed) volume of the enclosed
tetrahedron */
static double tetrahedron_volume(const double *d0,
const double *d1,
const double *d2,
const double *d3)
{
double x01 = d0[0] - d1[0];
double x12 = d1[0] - d2[0];
double x23 = d2[0] - d3[0];
double y01 = d0[1] - d1[1];
double y12 = d1[1] - d2[1];
double y23 = d2[1] - d3[1];
double z01 = d0[2] - d1[2];
double z12 = d1[2] - d2[2];
double z23 = d2[2] - d3[2];
return (x01*(y23*z12 - y12*z23) +
x12*(y01*z23 - y23*z01) +
x23*(y12*z01 - y01*z12)) / 6;
}
/* Given two points, returns the area of the enclosed triangle */
static double triangle_area(const double *a,
const double *b,
const double *c)
{
double ab0, ab1, ac0, ac1;
// ab: vector from a to b
ab0 = b[0] - a[0];
ab1 = b[1] - a[1];
// ac: vector from a to c
ac0 = c[0] - a[0];
ac1 = c[1] - a[1];
#ifndef THREED
// area = norm(cross product of ab and ac) / 2
return std::fabs(ab0*ac1 - ab1*ac0) / 2;
#else
double ab2, ac2;
ab2 = b[2] - a[2];
ac2 = c[2] - a[2];
// vector components of ab x ac
double d0, d1, d2;
d0 = ab1*ac2 - ab2*ac1;
d1 = ab2*ac0 - ab0*ac2;
d2 = ab0*ac1 - ab1*ac0;
// area = norm(cross product of ab and ac) / 2
return std::sqrt(d0*d0 + d1*d1 + d2*d2) / 2;
#endif
}
void compute_volume(const array_t &coord, const conn_t &connectivity,
double_vec &volume)
{
#pragma omp parallel for default(none) \
shared(coord, connectivity, volume)
for (std::size_t e=0; e<volume.size(); ++e) {
int n0 = connectivity[e][0];
int n1 = connectivity[e][1];
int n2 = connectivity[e][2];
const double *a = coord[n0];
const double *b = coord[n1];
const double *c = coord[n2];
#ifdef THREED
int n3 = connectivity[e][3];
const double *d = coord[n3];
volume[e] = tetrahedron_volume(a, b, c, d);
#else
volume[e] = triangle_area(a, b, c);
#endif
}
}
void compute_dvoldt(const Variables &var, double_vec &dvoldt)
{
/* dvoldt is the volumetric strain rate, weighted by the element volume,
* lumped onto the nodes.
*/
const double_vec& volume = *var.volume;
const double_vec& volume_n = *var.volume_n;
std::fill_n(dvoldt.begin(), var.nnode, 0);
class ElemFunc_dvoldt : public ElemFunc
{
private:
const Variables &var;
const double_vec &volume;
double_vec &dvoldt;
public:
ElemFunc_dvoldt(const Variables &var, const double_vec &volume, double_vec &dvoldt) :
var(var), volume(volume), dvoldt(dvoldt) {};
void operator()(int e)
{
const int *conn = (*var.connectivity)[e];
const double* strain_rate = (*var.strain_rate)[e];
// TODO: try another definition:
// dj = (volume[e] - volume_old[e]) / volume_old[e] / dt
double dj = trace(strain_rate);
for (int i=0; i<NODES_PER_ELEM; ++i) {
int n = conn[i];
dvoldt[n] += dj * volume[e];
}
}
} elemf(var, volume, dvoldt);
loop_all_elem(var.egroups, elemf);
#pragma omp parallel for default(none) \
shared(var, dvoldt, volume_n)
for (int n=0; n<var.nnode; ++n)
dvoldt[n] /= volume_n[n];
// std::cout << "dvoldt:\n";
// print(std::cout, dvoldt);
// std::cout << "\n";
}
void compute_edvoldt(const Variables &var, double_vec &dvoldt,
double_vec &edvoldt)
{
/* edvoldt is the averaged (i.e. smoothed) dvoldt on the element.
* It is used in update_stress() to prevent mesh locking.
*/
#pragma omp parallel for default(none) \
shared(var, dvoldt, edvoldt)
for (int e=0; e<var.nelem; ++e) {
const int *conn = (*var.connectivity)[e];
double dj = 0;
for (int i=0; i<NODES_PER_ELEM; ++i) {
int n = conn[i];
dj += dvoldt[n];
}
edvoldt[e] = dj / NODES_PER_ELEM;
}
// std::cout << "edvoldt:\n";
// print(std::cout, edvoldt);
// std::cout << "\n";
}
void NMD_stress(const Variables &var, double_vec &dp_nd, tensor_t& stress)
{
/* dp_nd is the pressure change, weighted by the element volume,
* lumped onto the nodes.
*/
const double_vec& volume = *var.volume;
const double_vec& volume_n = *var.volume_n;
std::fill_n(dp_nd.begin(), var.nnode, 0);
class ElemFunc_NMD_stress : public ElemFunc
{
private:
const Variables &var;
const double_vec &volume;
double_vec &dp_nd;
public:
ElemFunc_NMD_stress(const Variables &var, const double_vec &volume, double_vec &dp_nd) :
var(var), volume(volume), dp_nd(dp_nd) {};
void operator()(int e)
{
const int *conn = (*var.connectivity)[e];
double dp = (*var.dpressure)[e];
for (int i=0; i<NODES_PER_ELEM; ++i) {
int n = conn[i];
dp_nd[n] += dp * volume[e];
}
}
} elemf(var, volume, dp_nd);
loop_all_elem(var.egroups, elemf);
#pragma omp parallel for default(none) \
shared(var, dp_nd, volume_n)
for (int n=0; n<var.nnode; ++n)
dp_nd[n] /= volume_n[n];
/* dp_el is the averaged (i.e. smoothed) dp_nd on the element.
*/
#pragma omp parallel for default(none) \
shared(var, dp_nd, stress)
for (int e=0; e<var.nelem; ++e) {
const int *conn = (*var.connectivity)[e];
double dp = 0;
for (int i=0; i<NODES_PER_ELEM; ++i) {
int n = conn[i];
dp += dp_nd[n];
}
double dp_el = dp / NODES_PER_ELEM;
double* s = stress[e];
double dp_orig = (*var.dpressure)[e];
for (int i=0; i<NDIMS; ++i) s[i] += ( - dp_orig + dp_el ) / NDIMS;
}
}
double compute_dt(const Param& param, const Variables& var)
{
// constant dt
if (param.control.fixed_dt != 0) return param.control.fixed_dt;
// dynamic dt
const int nelem = var.nelem;
const conn_t& connectivity = *var.connectivity;
const array_t& coord = *var.coord;
const double_vec& volume = *var.volume;
double dt_maxwell = std::numeric_limits<double>::max();
double dt_diffusion = std::numeric_limits<double>::max();
double minl = std::numeric_limits<double>::max();
for (int e=0; e<nelem; ++e) {
int n0 = connectivity[e][0];
int n1 = connectivity[e][1];
int n2 = connectivity[e][2];
const double *a = coord[n0];
const double *b = coord[n1];
const double *c = coord[n2];
// min height of this element
double minh;
#ifdef THREED
{
int n3 = connectivity[e][3];
const double *d = coord[n3];
// max facet area of this tet
double maxa = std::max(std::max(triangle_area(a, b, c),
triangle_area(a, b, d)),
std::max(triangle_area(c, d, a),
triangle_area(c, d, b)));
minh = 3 * volume[e] / maxa;
}
#else
{
// max edge length of this triangle
double maxl = std::sqrt(std::max(std::max(dist2(a, b),
dist2(b, c)),
dist2(a, c)));
minh = 2 * volume[e] / maxl;
}
#endif
dt_maxwell = std::min(dt_maxwell,
// 0.5 * var.mat->visc_min / (1e-40 + var.mat->shearm(e)));
0.5 * var.mat->visc(e) / (1e-40 + var.mat->shearm(e)));
if (param.control.has_thermal_diffusion)
dt_diffusion = std::min(dt_diffusion,
0.5 * minh * minh / var.mat->therm_diff_max);
minl = std::min(minl, minh);
}
double dt_advection = 0.5 * minl / var.max_vbc_val;
double dt_elastic = (param.control.is_quasi_static) ?
0.5 * minl / (var.max_vbc_val * param.control.inertial_scaling) :
0.5 * minl / std::sqrt(var.mat->bulkm(0) / var.mat->rho(0));
double dt = std::min(std::min(dt_elastic, dt_maxwell),
std::min(dt_advection, dt_diffusion)) * param.control.dt_fraction;
if (param.debug.dt) {
std::cout << "step #" << var.steps << " dt: " << dt_maxwell << " " << dt_diffusion
<< " " << dt_advection << " " << dt_elastic << " sec\n";
}
if (dt <= 0) {
std::cerr << "Error: dt <= 0! " << dt_maxwell << " " << dt_diffusion
<< " " << dt_advection << " " << dt_elastic << "\n";
std::exit(11);
}
return dt;
}
void compute_mass(const Param ¶m,
const int_vec &egroups, const conn_t &connectivity,
const double_vec &volume, const MatProps &mat,
double max_vbc_val, double_vec &volume_n,
double_vec &mass, double_vec &tmass)
{
// volume_n is (node-averaged volume * NODES_PER_ELEM)
volume_n.assign(volume_n.size(), 0);
mass.assign(mass.size(), 0);
tmass.assign(tmass.size(), 0);
const double pseudo_speed = max_vbc_val * param.control.inertial_scaling;
class ElemFunc_mass : public ElemFunc
{
private:
const MatProps &mat;
const conn_t &connectivity;
const double_vec &volume;
double_vec &volume_n;
double_vec &mass;
double_vec &tmass;
double pseudo_speed;
bool is_quasi_static;
bool has_thermal_diffusion;
public:
ElemFunc_mass(const MatProps &mat, const conn_t &connectivity, const double_vec &volume,
double pseudo_speed, bool is_quasi_static, bool has_thermal_diffusion,
double_vec &volume_n, double_vec &mass, double_vec &tmass) :
mat(mat), connectivity(connectivity), volume(volume),
volume_n(volume_n), mass(mass), tmass(tmass),
pseudo_speed(pseudo_speed), is_quasi_static(is_quasi_static),
has_thermal_diffusion(has_thermal_diffusion) {};
void operator()(int e)
{
double rho = (is_quasi_static) ?
mat.bulkm(e) / (pseudo_speed * pseudo_speed) : // pseudo density for quasi-static sim
mat.rho(e); // true density for dynamic sim
double m = rho * volume[e] / NODES_PER_ELEM;
double tm = mat.rho(e) * mat.cp(e) * volume[e] / NODES_PER_ELEM;
const int *conn = connectivity[e];
for (int i=0; i<NODES_PER_ELEM; ++i) {
volume_n[conn[i]] += volume[e];
mass[conn[i]] += m;
if (has_thermal_diffusion)
tmass[conn[i]] += tm;
}
}
} elemf(mat, connectivity, volume, pseudo_speed, param.control.is_quasi_static,
param.control.has_thermal_diffusion, volume_n, mass, tmass);
loop_all_elem(egroups, elemf);
}
void compute_shape_fn(const array_t &coord, const conn_t &connectivity,
const double_vec &volume, const int_vec &egroups,
shapefn &shpdx, shapefn &shpdy, shapefn &shpdz)
{
class ElemFunc_shape_fn : public ElemFunc
{
private:
const array_t &coord;
const conn_t &connectivity;
const double_vec &volume;
shapefn &shpdx, &shpdy, &shpdz;
public:
ElemFunc_shape_fn(const array_t &coord, const conn_t &connectivity, const double_vec &volume,
shapefn &shpdx, shapefn &shpdy, shapefn &shpdz) :
coord(coord), connectivity(connectivity), volume(volume),
shpdx(shpdx), shpdy(shpdy), shpdz(shpdz) {};
void operator()(int e)
{
int n0 = connectivity[e][0];
int n1 = connectivity[e][1];
int n2 = connectivity[e][2];
const double *d0 = coord[n0];
const double *d1 = coord[n1];
const double *d2 = coord[n2];
#ifdef THREED
{
int n3 = connectivity[e][3];
const double *d3 = coord[n3];
double iv = 1 / (6 * volume[e]);
double x01 = d0[0] - d1[0];
double x02 = d0[0] - d2[0];
double x03 = d0[0] - d3[0];
double x12 = d1[0] - d2[0];
double x13 = d1[0] - d3[0];
double x23 = d2[0] - d3[0];
double y01 = d0[1] - d1[1];
double y02 = d0[1] - d2[1];
double y03 = d0[1] - d3[1];
double y12 = d1[1] - d2[1];
double y13 = d1[1] - d3[1];
double y23 = d2[1] - d3[1];
double z01 = d0[2] - d1[2];
double z02 = d0[2] - d2[2];
double z03 = d0[2] - d3[2];
double z12 = d1[2] - d2[2];
double z13 = d1[2] - d3[2];
double z23 = d2[2] - d3[2];
shpdx[e][0] = iv * (y13*z12 - y12*z13);
shpdx[e][1] = iv * (y02*z23 - y23*z02);
shpdx[e][2] = iv * (y13*z03 - y03*z13);
shpdx[e][3] = iv * (y01*z02 - y02*z01);
shpdy[e][0] = iv * (z13*x12 - z12*x13);
shpdy[e][1] = iv * (z02*x23 - z23*x02);
shpdy[e][2] = iv * (z13*x03 - z03*x13);
shpdy[e][3] = iv * (z01*x02 - z02*x01);
shpdz[e][0] = iv * (x13*y12 - x12*y13);
shpdz[e][1] = iv * (x02*y23 - x23*y02);
shpdz[e][2] = iv * (x13*y03 - x03*y13);
shpdz[e][3] = iv * (x01*y02 - x02*y01);
}
#else
{
double iv = 1 / (2 * volume[e]);
shpdx[e][0] = iv * (d1[1] - d2[1]);
shpdx[e][1] = iv * (d2[1] - d0[1]);
shpdx[e][2] = iv * (d0[1] - d1[1]);
shpdz[e][0] = iv * (d2[0] - d1[0]);
shpdz[e][1] = iv * (d0[0] - d2[0]);
shpdz[e][2] = iv * (d1[0] - d0[0]);
}
#endif
}
} elemf(coord, connectivity, volume, shpdx, shpdy, shpdz);
loop_all_elem(egroups, elemf);
}
double elem_quality(const array_t &coord, const conn_t &connectivity,
const double_vec &volume, int e)
{
/* This function returns the quality (0~1) of the element.
* The quality of an equidistant (i.e. best quality) tetrahedron/triangle is 1.
*/
double quality;
double vol = volume[e];
int n0 = connectivity[e][0];
int n1 = connectivity[e][1];
int n2 = connectivity[e][2];
const double *a = coord[n0];
const double *b = coord[n1];
const double *c = coord[n2];
#ifdef THREED
{
int n3 = connectivity[e][3];
const double *d = coord[n3];
double normalization_factor = 216 * std::sqrt(3);
double area_sum = (triangle_area(a, b, c) +
triangle_area(a, b, d) +
triangle_area(c, d, a) +
triangle_area(c, d, b));
quality = normalization_factor * vol * vol / (area_sum * area_sum * area_sum);
}
#else
{
double normalization_factor = 4 * std::sqrt(3);
double dist2_sum = dist2(a, b) + dist2(b, c) + dist2(a, c);
quality = normalization_factor * vol / dist2_sum;
}
#endif
return quality;
}
double worst_elem_quality(const array_t &coord, const conn_t &connectivity,
const double_vec &volume, int &worst_elem)
{
double q = 1;
worst_elem = 0;
for (std::size_t e=0; e<volume.size(); e++) {
double quality = elem_quality(coord, connectivity, volume, e);
if (quality < q) {
q = quality;
worst_elem = e;
}
}
return q;
}