You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, thanks for sharing the code. Based on the instructions in the README, I tried to reproduce WMT'14 En-De Fully NAT + KD + CTC results. I got only 25.2 test BLEU with the following commands, while the paper reports 26.5 test BLEU (table 2). Similarly, there's discrepancy for KD + CTC + VAE (26.22 vs. 27.49) and KD + CTC + GLAT (26.16 vs. 27.2) results too.
Hi, thanks for sharing the code. Based on the instructions in the README, I tried to reproduce WMT'14 En-De Fully NAT + KD + CTC results. I got only 25.2 test BLEU with the following commands, while the paper reports 26.5 test BLEU (table 2). Similarly, there's discrepancy for KD + CTC + VAE (26.22 vs. 27.49) and KD + CTC + GLAT (26.16 vs. 27.2) results too.
@MultiPath @shawnkx : Can you please help?
Thanks in advance.
Software versions:
torch 1.7.1
fairseq 0.9.0
python 3.6.13
python train.py Fully-NAT/data/wmt14.en-de.dist.bin
--fp16
--left-pad-source False --left-pad-target False
--arch cmlm_transformer_ctc --task translation_lev
--noise 'full_mask' --valid-noise 'full_mask'
--dynamic-upsample --src-upsample 3
--decoder-learned-pos --encoder-learned-pos
--apply-bert-init --share-all-embeddings
--optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-06
--clip-norm 2.4 --dropout 0.3 --lr-scheduler inverse_sqrt
--warmup-init-lr 1e-07 --warmup-updates 10000 --lr 0.0005 --min-lr 1e-09
--criterion nat_loss --predict-target 'all' --loss-type 'ctc'
--axe-eps --force-eps-zero
--label-smoothing 0.1 --weight-decay 0.01
--max-tokens 4096 --update-freq 1
--max-update 300000 --save-dir fullynat/feb10_kd_ctc --save-interval-updates 5000
--no-epoch-checkpoints --keep-interval-updates 10 --keep-best-checkpoints 5
--seed 2 --log-interval 100 --no-progress-bar
--eval-bleu --eval-bleu-args '{"iter_decode_max_iter":0,"iter_decode_collapse_repetition":true}'
--eval-bleu-detok 'space'
--eval-tokenized-bleu --eval-bleu-remove-bpe '@@ ' --eval-bleu-print-samples
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric
--tensorboard-logdir fullynat/feb10_kd_ctc/tensorboard
python fairseq_cli/generate.py Fully-NAT/data/wmt14.en-de.dist.bin
--task translation_lev
--path fullynat/feb10_kd_ctc/checkpoint_best.pt
--gen-subset test
--axe-eps --iter-decode-collapse-repetition --force-eps-zero
--left-pad-source False --left-pad-target False
--iter-decode-max-iter 0 --beam 1
--remove-bpe --batch-size 10 \
The text was updated successfully, but these errors were encountered: