-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswk.m
359 lines (275 loc) · 10.2 KB
/
swk.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
function [Sout,time,ke,pe,Xp,hmov] = swk(Sin,f,Cg,numsteps,savestep,Xpin)
% [Sout,time,ke,pe,Xp,hmov] = swk(Sin,f,Cg,numsteps,savestep,Xpin)
%
% Solves rotating shallow water equations (H = 1+h)
%
% u_t = v*(f + zeta) - B_x + nu*del^(a) u
% v_t = -u*(f + zeta) - B_y + nu*del^(a) v
% h_t = -(u*h)_x -(v*h)_y -(u_x + v_y)
%
% w/ zeta = v_x-u_y and B = (u^2+v^2)/2 + Cg^2*h
%
% Inputs
%
% Sin: N x N x 3 array containing initial u, v, h, respectively
% f: Nondim Coriolis [ie inverse Rossby number f_0*L/U]
% Cg: Nondim GW speed [sqrt(g*H_0)/U]
% numsteps: Total number of timesteps
% savestep: Frequency, in timesteps, to save output
% Xpin: Structure Xpin.x, Xpin.y containing intial particle
% positions (optional)
%
% Outputs
%
% Sout: Arranged as Sin, but with 4th dimension for time
% time: Times at which output is saved
% ke: Time series of KE
% pe: Time series of PE
% hmov: Movie of h field (if hmov included in output list)
% Xp: Structure with coordinates Xp(j).x, Xp(j).y of particles,
% where j is timestep
%
% Numerical details
%
% Model is spectal, in square domain of size 2*pi x 2*pi. Input
% fields must have N = 2^n, where n is an integer. Nonlinear terms
% are done in physical space using dealiased product via Orszag
% method. Uses AB3 timestepping with trapezoidal hyperviscosity of
% order a. Timestep and hyperviscosity are set adaptively, via
% dt = dttune*dx/max(|u|) and nu = nutune*dx^a*zeta_rms.
%
% Tuning factors dttune and nutune and hyperviscous order a
% can be set by editing this file directly.
% Tuning
a = 8; % hyperviscosity order, nu del^a u
nutune = 1;
dttune = .1; % Courant number
% Set global params for use in rhs functions
global nx ikx_ iky_ kmax nkx nky u v h zeta divuk
global kgfac gkfac1 gkfac2 damask
global t
if nargin > 5,
particles=1;
Xp = Xpin;
np = length(Xpin.x);
else
particles=0;
Xp=0;
end
% Check for outputs requested
makemov=false;
if (nargout>5), makemov=true; end
% Maximum phase speed. Note omega = +/-sqrt(Cg^2*K^2+f^2)
Cmax = sqrt(Cg^2+f^2);
% Get and check dimensions
[nx,ny] = size(Sin(:,:,1));
if (nx~=ny), error('must have nx = ny'); end
if (mod(log2(nx),1)~=0), error('must have nx = 2^n, n integer'); end
% Dimensions of spectral fields -- stored on upper half-plane in kx,ky
% (lower half-plane given by conjugate symmetry).
kmax = nx/2 - 1; % 2^n - 1
nkx = 2*kmax+1; % -kmax:kmax
nky = kmax+1; % 0:kmax
L = 2*pi;
dx = L/nx;
% Set up arrays of wavenumbers for computing derivatives
[ikx_,iky_] = ndgrid(-kmax:kmax,0:kmax);
K_ = sqrt(ikx_.^2 + iky_.^2);
ikx_ = sqrt(-1)*ikx_;
iky_ = sqrt(-1)*iky_;
% Initialize fields for spectral products with Orszag dealiasing
kcut = sqrt(8./9.)*(kmax+1);
damask = ones(size(ikx_));
damask(K_>kcut) = 0.;
damask(1:kmax,1) = 0.; % changed from 1:kmax+1 to keep 0,0 value.
eipik = exp(pi*(ikx_+iky_)/nx);
kgfac = 1 + sqrt(-1)*fulspec(eipik);
gkfac1 = (1 - sqrt(-1)*conj(eipik))/4;
gkfac2 = (1 + sqrt(-1)*conj(eipik))/4;
% Trapezoidal hyperdiffusion operators
nudt = nutune*2*pi/(nx*kmax^a); % divide by dt to get effective nu
fR = (1+nudt/2*K_.^a).^(-1);
fU = (1-nudt/2*K_.^a).*fR;
filterU = ones(nkx,nky,3);
filterR = ones(nkx,nky,3);
filterU(:,:,1:2) = repmat(fU,[1 1 2]);
filterR(:,:,1:2) = repmat(fR,[1 1 2]);
clear K_ f1 f2
% Get initial spectral PV
Sk = g2k(Sin);
% Set params for AB3+trapezoidal diffusion (Durran 3.81)
a1 = 23/12; a2 = -16/12; a3 = 5/12;
% Preallocate arrays to hold saved output
nframes = floor(numsteps/savestep);
Sout = zeros(nx,ny,3,nframes); % output on grid
time = zeros(1,nframes);
ke = zeros(1,nframes);
pe = zeros(1,nframes);
% Set counters and temp fields
frame = 0; t = 0; n = 0;
Rk = 0; Rkm1 = 0; Rkm2 = 0;
keepgoing = true;
while keepgoing
% Save n-1 and n-2 rhs and get next one.
% getrhs sets u, v, h, too, but they have imaginary parts
% holding staggered grid fields; use real() for computations etc
Rkm2 = Rkm1;
Rkm1 = Rk;
Rk = getrhs(Sk,f,Cg);
if (n==0) Rkm1 = Rk; Rkm2 = Rk; end
Umax = max([max(abs(real(u(:)))) max(abs(real(v(:)))) Cmax]);
% Exit if blowing up, and save last field.
if (Umax>1e6)
disp(strcat('Blow up! Umax= ',num2str(Umax),', t= ',num2str(t)))
Sout(:,:,:,frame+1) = k2g(Sk);
keepgoing = false;
end
% Adapt dt and nu
dt = dttune*dx/Umax; % Courant condition
nu = nudt/dt;
% Save output at frequency savestep
if (mod(n,savestep)==0||n==0)
frame = frame+1;
ke(frame) = .5*sum(real(1+h(:)).*(real(u(:)).^2+real(v(:)).^2))/nx^2;
pe(frame) = .5*Cg^2*sum(real(h(:)).^2)/nx^2;
%hbar(frame) = sum(real(h(:)))/nx^2;
Sout(:,:,1,frame) = real(u);
Sout(:,:,2,frame) = real(v);
Sout(:,:,3,frame) = real(h);
time(frame) = t;
disp(strcat('Wrote frame >',num2str(frame),' out of >',num2str(nframes)))
disp(strcat('max(|u|) = ',num2str(Umax),', dt = ',num2str(dt),', nu = ',num2str(nu)))
if (makemov)
if (particles)
xp=[Xp(n+1).x]; yp=[Xp(n+1).y];
hc = plotstuff(frame,xp,yp);
else
hc = plotstuff(frame);
end
hmov(frame) = getframe(hc);
end
% if writeoutput
% save(outputfile,'Sout','ke','pe','time','Xp')
% end
%save
end
% Timestep and diffuse
Sk = filterU.*Sk + dt*filterR.*(a1*Rk + a2*Rkm1 + a3*Rkm2);
if (particles) % advect particles
Xp(n+2) = advect_particles(Xp(n+1),real(u),real(v),dx,dx,dt);
end
n = n+1;
t = t+dt; % clock
if (n==numsteps), disp('End reached'), keepgoing=false; end
end
return
%-------------------------------------------------------------------
% Internal functions
%-------------------------------------------------------------------
function Rk = getrhs(Sk,f,Cg)
global ikx_ iky_ u v h zeta divuk
u = k2gp(Sk(:,:,1));
v = k2gp(Sk(:,:,2));
h = k2gp(Sk(:,:,3));
zeta = k2gp(ikx_.*Sk(:,:,2) - iky_.*Sk(:,:,1)); % vorticity
divuk = ikx_.*Sk(:,:,1) + iky_.*Sk(:,:,2);
Bk = gp2k( .5*gprod(u,u)+.5*gprod(v,v) ) + Cg^2*Sk(:,:,3); % Bernouli in k-spc
Rk(:,:,1) = gp2k(gprod(v,zeta)) + f*Sk(:,:,2) - ikx_.*Bk;
Rk(:,:,2) = -gp2k(gprod(u,zeta)) - f*Sk(:,:,1) - iky_.*Bk;
Rk(:,:,3) = -ikx_.*gp2k(gprod(u,h)) - iky_.*gp2k(gprod(v,h)) -divuk;
return
%-------------------------------------------------------------------
function fg = k2gp(fk)
% Transform to grid space, packing fields shifted by dx/2 into
% imaginary part
global nx kgfac damask
fkt = fulspec(damask.*fk).*kgfac;
fg = nx^2*ifft2(ifftshift(fkt));
return
%-------------------------------------------------------------------
function prodg = gprod(f,g)
% Product of real parts and imaginary parts, loaded
% respectively into real and imaginary part of output
prodg = real(f).*real(g) + sqrt(-1)*imag(f).*imag(g);
return
%-------------------------------------------------------------------
function prodk = gp2k(prodg)
% Transform grid field, holding product of fields,
% with imaginary part holding field
% shifted by dx/2, to k-space, and average result
global nx kmax gkfac1 gkfac2
Wk = fftshift(fft2(prodg))/nx^2;
% Extract spectral products on grid and shifted grid, and average.
Wk_up = Wk(2:end,kmax+2:end);
Wk_dn = rot90(rot90((conj(Wk(2:end,2:kmax+2)))));
%prodk = ((1 - icalphak).*Wk_up + (1 + icalphak).*Wk_dn)/4;
prodk = gkfac1.*Wk_up + gkfac2.*Wk_dn;
return
%-------------------------------------------------------------------
function fk = g2k(fg)
% Just for transforming gridded input field
global nx kmax
for j=1:size(fg,3)
fkt = fftshift(fft2(fg(:,:,j)))/nx^2;
fk(:,:,j) = fkt(2:end,kmax+2:end);
end
return
%-------------------------------------------------------------------
function fg = k2g(fk)
% Transform to grid space - just for output.
global nx
for j=1:size(fk,3)
fg(:,:,j) = nx^2*ifft2(ifftshift(fulspec(fk(:,:,j))));
end
return
%-------------------------------------------------------------------
function fkf = fulspec(fk);
% Assumes fk contains upper-half plane of spectral field,
% and specifies lower half plane by conjugate
% symmetry. Input fk should be (1:2*kmax+1,1:kmax+1), kmax = 2^n-1.
% fkf is padded with zeros on (1,:) and (:,1), as expected
% by fftshift. Grid resolution will be 2^(n+1) x 2^(n+1).
global kmax nx nkx nky
fkf = zeros(nx,nx);
fup = fk;
fup(kmax:-1:1,1) = conj(fup(kmax+2:nkx,1));
fdn = conj(fup(nkx:-1:1,nky:-1:2));
fkf(2:nx,nky+1:nx) = fup;
fkf(2:nx,2:nky) = fdn;
return
%-------------------------------------------------------------------
function [hc] = plotstuff(frame,xp,yp)
persistent cvec
global h zeta divuk nx t
if (frame==1), cvec = [min(real(h(:))) max(real(h(:)))];, end
% figure(10)
% axis square
%
% disp('move and reshape figure 10 as desired, then press any key')
% pause
%end
figure(11);
clf
x = linspace(0,2*pi*(nx-1)/nx,nx)-pi;
%plot(x,real(h(:,1))), grid
%axis([-pi pi -.2 .2])
%pcolor(x,x,real(h)'), shading interp, colorbar, axis image; %, caxis(cvec)
%title('\eta')
subplot(1,2,1)
pcolor(x,x,real(zeta-h)'), shading interp, colorbar, axis image
title(strcat('PV at t=',num2str(t)),'fontsize',14)
if (nargin>1)
hold
plot(xp,yp,'k.','MarkerSize',10)
end
set(gca,'fontsize',14)
subplot(1,2,2)
pcolor(x,x,k2g(divuk)'), shading interp, colorbar, axis image
title('Divergence','fontsize',14)
set(gca,'fontsize',14)
%pcolor(real(zeta)'), shading interp, colorbar, axis tight manual
%pcolor(k2g(divuk)'), shading interp, colorbar, axis tight manual
%caxis(cvec)
drawnow
hc=gca;
return