-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path7-transformer_encoder_block.py
executable file
·33 lines (29 loc) · 1.3 KB
/
7-transformer_encoder_block.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#!/usr/bin/env python3
"""EncoderBlock class to create an encoder block for a transformer"""
import tensorflow as tf
MultiHeadAttention = __import__('6-multihead_attention').MultiHeadAttention
class EncoderBlock(tf.keras.layers.Layer):
"""EncoderBlock class"""
def __init__(self, dm, h, hidden, drop_rate=0.1):
"""Class constructor"""
super().__init__()
self.mha = MultiHeadAttention(dm, h)
self.dense_hidden = tf.keras.layers.Dense(hidden, activation='relu')
self.dense_output = tf.keras.layers.Dense(dm)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(drop_rate)
self.dropout2 = tf.keras.layers.Dropout(drop_rate)
def call(self, x, training, mask=None):
"""Call Method"""
attn_output, _ = self.mha(x, x, x, mask)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(x + attn_output)
ffn = tf.keras.Sequential([
self.dense_hidden,
self.dense_output
])
ffn_output = ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output)
return out2