diff --git a/numpy_quiz.ipynb b/numpy_quiz.ipynb index 8b6785a..c3ebdcc 100644 --- a/numpy_quiz.ipynb +++ b/numpy_quiz.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -48,12 +48,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "x = #TODO\n", - "noise = #TODO" + "x = np.linspace(0,5,100)\n", + "noise = np.random.randn(100)\n", + "#print(x)\n", + "#print(noise)" ] }, { @@ -72,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -99,9 +101,41 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 2.63081816e+00 2.51064633e+00 3.60481213e+00 2.92064481e+00\n", + " 2.67084268e+00 1.84186696e-01 1.55234973e+00 6.19279569e-01\n", + " 1.42297123e+00 8.35733908e-01 1.64000240e+00 8.48082413e-01\n", + " 1.12333439e+00 -3.18168918e-01 -9.79850806e-01 -6.24007453e-01\n", + " -4.04429862e-01 -1.76607881e-01 1.54030069e+00 -9.19412544e-01\n", + " -1.98614600e+00 -1.52412686e+00 -1.78458363e+00 -9.77247227e-01\n", + " -3.13216524e+00 -1.65564424e+00 -1.68483618e+00 -1.72649665e+00\n", + " -2.66822720e+00 -2.41596479e+00 -3.70413437e+00 -2.87032223e+00\n", + " -3.01169119e+00 -2.13950551e+00 -3.79336231e+00 -1.93250458e+00\n", + " -1.29063942e+00 -4.92142876e+00 -2.48640324e+00 -2.29187066e+00\n", + " -3.65723092e+00 -3.46297940e+00 -3.23940032e+00 -3.44002126e+00\n", + " -3.48185248e+00 -4.87435091e+00 -2.06642162e+00 -2.15443916e+00\n", + " -4.05762505e+00 -4.71578664e+00 -2.72829743e+00 -3.82004876e+00\n", + " -3.09210459e+00 -3.53808161e+00 -2.50680836e+00 -2.47809036e+00\n", + " -3.86782776e+00 -4.48988370e+00 -4.64864598e+00 -2.40941452e+00\n", + " -4.15763795e+00 -3.41947833e+00 -3.44775777e+00 -2.83769126e+00\n", + " -4.64998249e+00 -2.44840128e+00 -2.03166453e+00 -2.38040762e+00\n", + " -2.68788852e+00 -2.18267330e+00 -1.77899671e+00 -4.84350389e+00\n", + " -2.76537770e-03 -1.45124940e+00 -2.37131482e+00 -1.98232160e+00\n", + " -9.64986924e-01 -1.43709159e+00 -3.20882956e+00 1.03429186e+00\n", + " -9.87696050e-01 3.01164447e-01 -1.24780946e+00 1.14896761e+00\n", + " 7.23859295e-02 5.73439284e-01 -8.97003188e-01 1.54815172e+00\n", + " 1.22068236e+00 2.03166972e+00 3.05796738e-01 6.62019509e-01\n", + " 3.66122718e+00 5.16660027e-01 1.66519304e+00 3.16760251e+00\n", + " 2.36310605e+00 3.08810622e+00 2.35057648e+00 3.37005589e+00]\n" + ] + } + ], "source": [ - "t = #TODO" + "t = y(x) + noise" ] }, { @@ -114,9 +148,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGfCAYAAABiCLkcAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKo1JREFUeJzt3X+MVeW56PFnM0cGRWYsIo78UETaWkp0ooJaqVFEocf0gn80HoNp8TakNWCw2hQ4vVWJ5KJp/7BVayx/KDlWoWkjnKNXWo6oDedCsHKnR1r1KtEjBQcE2xkc68Bl9s2zyqIzm/1j7b3XWu+v7yfZ2ewfM3vNZu+1nvW+z/O8hWKxWBQAAAADhpl4UQAAAEUgAgAAjCEQAQAAxhCIAAAAYwhEAACAMQQiAADAGAIRAABgDIEIAAAwhkAEAAAYQyACAACM+Ye8XuiBBx6QFStWyNKlS+Whhx5K9DMDAwOyb98+GTVqlBQKhcy3EQAANE9Xjzl8+LCMGzdOhg0bZj4QefXVV+Xxxx+Xiy66qK6f0yBk4sSJmW0XAADIzp49e2TChAlmA5GPP/5YFixYIGvWrJFVq1bV9bM6EhL/IW1tbRltIQAASFNvb280kBAfx40GIosXL5Ybb7xRZs+eXTMQ6e/vjy4xHdZRGoQQiAAA4JYkaRWZBiLr1q2TnTt3RlMzSaxevVpWrlyZ5SYBAIAQqmZ0OkUTU3/+85/LiBEjEv2MJrP29PScuOjvAAAA/ioUNbU1Axs2bJCbbrpJWlpaTtx37NixaJhGM2h1CmbwY5XmmNrb26OghKkZAADcUM/xO7Opmeuuu05ef/31IffddtttcuGFF8qyZctqBiEAAMB/mQUimik7bdq0IfeNHDlSzjzzzJPuBwAAYaKzKgAA8L+zqnr55ZfzfDkAAGA5RkQAAEAYIyIAAOBvjg0UZce7H8mBw5/K2FEjZMb5o6VlWHjrqhGIAACQs027PpCV//ZH+aDn0xP3ndM+Qu796lSZO+0cCQlTMwAA5ByE3P7UziFBiOru+TS6Xx8PCYFIlSGzbbsPycauvdG13gYAoBl6LNGRkHJHlOLxa308pGMOUzNlMGQGAMiC5oSUjoQMpuGHPq7Pu/KCMyUEjIiUYMgMAJAVTUxN83k+IBAZhCEzAECWtDomzef5gECkwSEzAADqpSW6OtVfqUi3cDwVQJ8XCgKRQRgyAwBkSfuEaL6hKg1GCsev9fGQ+okQiAzCkBkAIGta9PDYrZdIR/vQY4ne1vtDK4qgaqbMkJkmppbLAikc/6CENGQGAEifBhvXT+2gsyqBSPkhM62O0Y/C4GAk1CEzAEA29FhyZSAlutUwNVOCITMAQAiOWdK4kxGRMhgyAwD4bJNFjTsLxWLR2qYYvb290t7eLj09PdLW1mZ6cwAA8KZxZ7Hk/vhUO43R/3qO30zNAAAQiGMWNu4kEAEAIBA7LGzcSSACAEAgDljYuJNABACAQIy1sHEngQgAAIGYYeFaNwQiAAAE0vujxcK1bugjAgCAA9Lq/RE37iz9Xdq4kz4iJegjAgCAZNL7Q0dTsmrcWc/xmxERAAAc7v1RON77QzuCayCRNMCwZa0bAhEAADzp/dHz1yPWtG5PimRVAAAsdiBhT4/Nf+yOpm9Kg5bunk+j+3V6x0YEIgAAWGxswp4eG7r2WdW6PSkCEQAAHO/9MXrkKfJR3xGrWrcnRSACAIDFWhL0/ripc7x1rduTIhDJqYkMAACNmnu894f2+hhMb+v9s6d2WNe6PSmqZnJsIgMAQKPmTjsnKtEtV5qrJ8d6XNLE1HKnyYXjQUuerduTYkQkYRMZ17KQAQD+aTne+2Ne5/joOu4PYmPr9qQIRJpoImNzFjIAICxza0zf2DqCz9RMSk1kbOhOBwAI29wq0ze2IhBJIbvYxixkAECYWixp3Z4UUzMpZBfbmIUMAIALCESabCJzjqVZyAAAuIBApAqXs5ABAHABgYinWcgAALiAZNUmspCVdll1JTMZAADbEIg0mIVMt1UAAJoX5NRMs+vG0G0VAIB0BDci0uxIRq1uqzoxo4/rVA7TNAAAVBfUiEgaIxn1dFsFAADVBROIpLVuDN1WAQBITzCBSFojGXRbBQAgPcEEIklHKP7jnQ+rjorQbRUAgPQEE4gkHaF45KXdMvPBLRXzRei2CgBAeoIJRGqNZNSTvEq3VQAA0lEoFov1NdHIUW9vr7S3t0tPT4+0tbWlVjWjav3RheOBxdZlsyqObugUTmm3VUZCAACh663j+B3MiEi1kYxGk1fjbqvzOsdH1wQhAADUJ6hAJA5GdJRjybVTEj2fMlwAgM2a7RZuWnCdVZWOXFw1ZYw88tI7NZ9LGS4AwPVu4ccsTiUIMhAZnLyqianFKjkilOECAGy06XjeY7FCwUVcPGH7Iq3BTc3EKMMFAPjeLfx//af9i7QGG4goynABAD53C/8fG3c1vbRJ1oKdmolpsKEr5do6dwYAQKOFFB/1HUlUHaqVn6YEH4gMLsMFAMAFY1MspDBdHRr01AwAAC6akWDds9EjT0n0u0xXhxKIAADgYcHFqnnTnFiklUAEAAAPCy7+8aJxTlSHBrXWDAAAvjlWo1mZiT4i9Ry/CUQAAPDcsZw7q9Zz/KZqBgAAz7VYXB1KIAIAQBNsXsfFBQQiAAA0yPZ1XFyQadXM6tWrZfr06TJq1CgZO3aszJ8/X956660sXxIAgFwXnbN5HRcJPRB55ZVXZPHixbJ9+3bZvHmzHD16VG644Qbp6+vL8mUBALBi0TnT67hI6FMzmzZtGnL7ySefjEZGXnvtNbn66quzfGkAAIwvOmd6HRcX5NrQTMt41OjRZru4AQCQx/osptdxcUFuyaoDAwNy5513ylVXXSXTpk0r+5z+/v7oMrgOGQAA2yRdn8X0Oi4uyG1ERHNFdu3aJevWraua3KoNUOLLxIkT89o8AABSXXTOhnVcXJBLILJkyRJ57rnn5KWXXpIJEyZUfN6KFSui6Zv4smfPnjw2DwCA1Beds2EdFwk9ENHu8RqEPPvss7JlyxY5//zzqz6/tbU1agU7+AIAgIuLztFHxIIcEZ2Oefrpp2Xjxo1RL5Hu7u7ofp12OfXUU7N8aQAAMqfBxvVTO+is2oRMF70rFMr/RzzxxBOycOHCmj/PoncAALjHmkXvLF7YFwAAhNZHBAAAYDACEQAAYAyr7wIAYKljA0XvE2EJRBwRwocRAPB3unqvLpw3eE0bbZKm/Ul8Kg0mEHFAKB9GAMDf9/u3P7XzpNV9u3s+je73qU8JOSKOfBhLV3mMP4z6OADArxHwlf/2x5OCEBXfp4/r83xAIJIx/aBs231INnbtja7r+eCE9mEEAJ/24Y3a8e5HJ518DqZboI/r83zA1IzFUyr1fBivvOBMyRt5KwB8Zmpa/MDhT1N9nu0IRCye37P5w0jeCgCfmczRGDtqRKrPsx1TMxlIa0rF1g8jeSsAfGZ6WnzG+aOjE7tK48t6vz6uz/MBgYjF83s2fhhNf0EBwPccjZZhhWh0WZXu/+Pb+rgvU+EEIhmod0qlUjKUjR9G019QAMiaDdPic6edE03/dLQPHfHW2z6V7ipyRDJQz5RKrVyL+MNY+pwOQ/kYNnxBASBLtkyLz512jlw/tcP7ogACkQzEUyqaM1FugqJwPJD4c98RWfx07WQomz6MtnxBAcD0PjyPafGWYQUjVZF5YmomA0mmVH5w4xfk/ueT51rEH8Z5neOja1MRsY15KwCQJhunxX1GIGJofu8zI1udzLXgCwogBCHlaJjG1EyGqk2paGKqq7kWtuWtAEAWbJoW9xmBiKH5PddzLfiCAghBCDkaphGIGGJTMlSj+IICAJpFjogh5FoAgHtMLILnO0ZEDCLXAgDcwRpb2SgUi0Vrw7ne3l5pb2+Xnp4eaWtrE1+xii0AuLkIXrynppKm8eM3IyIWINcCAOw9wau1xpb+Vn1cE/g5iawfgYhHGFkBgPSnUOpZY4uTyvoRiHiCuUsAqDyFUrp0Rj1YYytbVM149MUrjdjjL54+DgC+qzWFUrp0RlKu932yHYGI47L64gGAa6Wx9Uyh1IM1trLF1IzjmLsE4IM0ppezmkKJ+z7pCLMGHYPDI/o+NY8REccxdwnAdWlNL2c5hcIieNlhRMRxzF0CcFmapbFZL53BGlvZYETEccxdAnBZmnkdeSydEfd9mtc5PromCGkegYjjWLMGgMvSnl5mCsU9TM14gDVrALgqi+llplDcQiDiCb54AFyUVV4HS2e4g0DE4Xbt5Z7DFw+ASyiNBYGIo/X0tHQH4Auml8NWKBaLRR+WEQ5pqWnFctQAfMPCnf6o5/jNiIhj9fT3/esfon+xHDUA35DXESbKdx2rp+/u7Zfu3vTXUgAAwAQCEYuk2Yadlu4AABcQiFgkzTbstHQHALiAHBHH6unPbmuN/rW/N5u1FAAA6SMRtzICEcfq6e/7b1+Mrqm5BwA30G6hOqZmDEXG23Yfko1de6NrvV3POgmspQAAbrVkKC1E0JFvvX/Trg8kdPQRsTQybrSzKiMhAJBM1vtQ/f0zH9xSsRoynkrfumyWd/tu+og41qwsjowHj2Ykqaen5h4A7J0uSdKS4YPj7RZC3pczNWNJszKljw+epgEAuDtdkrSNwoHA2y0QiOSknsgYAOD+SWHSNgpjjz+vWv6gz5iayQmRMQCYl+d0SZKWDB3H2y2EXFnDiEhO6o2MAQBunxTGLRlUaSrq4HYLm//YHXRlDYFITuLIuFJetN6vj9OIDAD8OSms1W7h+qkdwecPMjVjUbMyGpEBQLbqmS5JiwYjGnCUKxXetvtQ8JU1jIjkiEZkAGBW0umStE8K43YL8zrHR9fx7z9A/iAjInmrFhkDAPI7KSxNDu0wkBw6lvxBAhETaEQGAGbZclI4w8BUkW0IRAAAQbZmz/KkMOk2tpA/SCACAHCHC/026t3GuRZNFZnAoncAAKfX64rHCmxI+m9mG495tJBpPcdvqmYAANZzYb2uZrexpUJlje8IRAAA1nNhvS4XttFG5IikyKdhNQCwiQv9NlzYRhsRiASUQAUArnKh34YL22gjpmZSTE4KdcEiAMiaC+t1ubCNNiIQCSCBCgBcZ6o1u2/baCMCkSaRnAQA9q/XpSeDusDcxq690XVWJ4esKVY/ckSaRHISANjdmj3vHD5b2se7gkCkSSQnAUC+6mnNXqnBWJzDl9UoBWuKJcfUTJNITgLgk7ymMPJADp8bMg9EHn30UZk0aZKMGDFCLr/8ctmxY4f4hOQkAL7Q0YOZD26RW9Zsl6XruqJrve1q5R85fG7INBBZv3693HXXXXLvvffKzp075eKLL5Y5c+bIgQMHxCckJwFwnY9tCMjhc0Omi97pCMj06dPlkUceiW4PDAzIxIkT5Y477pDly5d7t+gdnVUBuEj3XTryUWn0oHD8xGrrsllO7dN0aklHdWp5ZtEV5HOkrJ7jd2bJqkeOHJHXXntNVqxYceK+YcOGyezZs2Xbtm1lf6a/vz+6DP5DXEJyEgDfpzBc2sfFOXw6qlOsEmCRw+fp1MzBgwfl2LFjcvbZZw+5X293d3eX/ZnVq1dHEVR80dETAEC2fJ3CIIfPDVZVzejoiQ7jxJc9e/aY3iQA8J7PbQjI4bNfZlMzY8aMkZaWFtm/f/+Q+/V2R0dH2Z9pbW2NLrAP+S+Av3yfwqDBWKCByPDhw+XSSy+VF198UebPn38iWVVvL1myJKuXRQZYWRjwWzyFodUxemguejiFQQ5foFMzWrq7Zs0aWbt2rbzxxhty++23S19fn9x2221ZvixS5GNJH4CTMYUBL1u833zzzfLhhx/KPffcEyWodnZ2yqZNm05KYIWbXQn13Egf1yFPl8+UAPwNUxjwro9Is1zrI+IbavABAM72EYH7Saa+lvQBAOxBIOKxZpNMfS7pAwDYwao+IrAryZSVhQEAWSMQ8VBaS1/TlRAAkDUCEQ+lsfS1BimarNr//wbkztmfk7PbKOkDAKSPHBEPNZtkWi63pKOtVb4z+7MyacxISvoAAKlhRMRDzSSZVsot2d/bLw/9+9vS+g/DolJdghAAQBoIRDzUaJJpWrklAAAkRSDioUaTTNPILQEAoB4EIp5qZN0IGpgBAPJGsqrH6l03ggZmAIC8EYh4rp6lr+PcEm16Vi4LpHB8RIUGZgCAtDA1gxM9Q577z33yT9PPje6jgRkAIA+MiASuXM+QM047Jbr+yydHT9zXUccaNQAAJEUgErC4Z0jpNEzPJ0ej+2hgBgDIGoFIoGr1DNGQY92re2TrslkEIACAzJAjEih6hgAAbEAgEih6hgAAbEAgEih6hgAAbEAgEqhG16MBACBNBCKBanQ9GgAA0kQgErBG1qMBACBNlO8Grt71aAAASBOBCOpajwYAfO6vxElZ/ghEkBq+xAB8Wu5CE/ZZ2iJ7BCJIBV9iAL4td6Erkev95Mxli2TVQFfa3di1N7rW22l9iUs7tcZfYn3c9DYCyFda3+Os9we1lrtQ+jj7oewwIhKQLEYtkqxZo49rQmySaRpGVgD3pfU9zmN/UM9yF+TSZYMRkUCkPWqRxZo1WW0jgPyk9T3Oa3/AchfmEYgEIMuhx7S+xAyPAu5L63uc5/6A5S7MIxAJQJYr7ab1JWY1YMB9aX2P89wfsNyFeQQiAchy6DGtLzHDo4D70voe57k/YLkL8whEApDl0GNaX2KGRwH3pfU9znt/wHIXZlE1E4B41EKTvMrNqBaOf+EaHXqMv8Sl2e0ddWS3Z72NALKX1vfYxP6A5S7MIRAJQDxqoZnm+pUqZjD02OyXOI9tBJCttL7HpvYHLHdhRqFYLFpbhtDb2yvt7e3S09MjbW1tpjfHeS706HBhGwH400cE5o/fBCKBcWE9GBe2EUA+32P2B24iEAEABINgxe3jNzkigGHsRIHGMX3jPgIRwCB2okDjWDXXD/QRAQxhbR2gcSwL4Q8CEcAAdqJAc1gWwh8EIoAB7ESB5rAshD8IRAAD2IkCzWFZCH+QrAoYwE4UoUm7OoxlIfxBIAIYwE4UIQUQWVSHsSyEP2hoBhiumpEKO1FKD2FaGgFEpRLbtD7nlMDbic6qsBbNu4ZiJwpbpRFA6Pd95oNbKiZmxyN/W5fNamo/wH7FPnRWhZU46J6MpcfhYnm5fjr1cf3sVvus1lMd1syqt6ya6zaqZpALmnfV3onO6xwfXROEwJfycqrDkASBCDJH8y7ALWkFEFSHIQkCEWSO5l2AW9IKIOLqsEpjfHq/Pk51WNgIRJA5hmcBt6QVQMQltvHPlP4ORYktCESQuayGZ3UqZ9vuQ7Kxa290zdQOkI40AwhNyNYKG62OGUxvU6IORdUMnGzeVa4Cp6OtVW6Zca5MGjOS6hOgSXEAcdL3rIFKN6rDUA19ROBc865K/Q1KafDzgxu/IJ8Z2crOD2gQPTrQCBqawds+IrUaJNUSet8SAMgDgQi8PbvSXJBb1mxv+PVpn45QMbKBPNFZFdYq1wGxnh1ks5U19XSFBHxBV2PYjEAETu0g02h8lFZbacAFlXKq4q7GjA7CNMp34VTb91r9DepB3xL4jq7GcAGBCJzaQVbrb1Av2krDd3Q1hgsIRODcDrJSg6SkaCuNUNDVGC4gRwRO7iBLGyS9d/ATeWbH+9LdW/33mm4rTeUC8sSic3ABgQic3UGWVuAsmTVlyEH+z31H5P7nm+8KmRYqF+BDV2MgbQQi8GYHWa40eM40O9pKU7kAE+KcKv2MFSp0NU5jdJCRPjSDhmbIVLUdVJpt321WqxtsHHRtXTaLnTecG41jpA9WdlZ977335P7775ctW7ZId3e3jBs3Tm699Vb5/ve/L8OHD0/8ewhE3JZkBxXCTixpN9hnFl1BXxNkNtqQxahFpZE+304m4GBn1TfffFMGBgbk8ccflylTpsiuXbtk0aJF0tfXJz/60Y+yeElYJulURAirclK5gEalGaiXm7rMsgSfDsZIKpNAZO7cudElNnnyZHnrrbfkscceIxAJQL07qLR3kLbxsXKBnIDs2Z5XVE8Jvs/fbziUrKrDM6NHV0887O/vjy6Dh3bgHnZQflcuhDCdZpoLow2M9MGphmbvvPOOPPzww/Ktb32r6vNWr14dzSnFl4kTJ+axeUgZOyhJ3A3WdF+TPNryw8+OqD6O9MGBQGT58uVSKBSqXjQ/ZLC9e/dG0zRf+9rXojyRalasWBGNnMSXPXv2NPZXwahQd1B6FquJqRu79kbXg9vTV+oGq7dND7GndZaul39+9nV59v+c/PfDv2C+1rpPdDBGJlMzd999tyxcuLDqczQfJLZv3z659tpr5Utf+pL87Gc/q/n7W1tbowvc5ttURFrTFa4n5tY6S1cf9R2V76zviv7NdI3ZYD7rPJ68epTAf5n1EdGREA1CLr30UnnqqaekpaWl7t9B+a67QukRElIJo470LF33tyAjCd/+fhO9Z2oF85V6z+SZx0POEKzsI6JByDXXXCPnnXeerF27dkgQ0tHRkfj3EIi4LYQdVEjNypL2Q/H173clmDcRGFNFBev6iGzevDlKUNXLhAkThjxmcSNXpMz1qYgkQqoQqjXl5vvfn7c4r6g0mK+2XpKpahvfS/CRrUwCEc0jqZVLgjD4voNyIakwj5yAEP5+F4L5kAJj+INF7wAHK4RMDYVXOksPrULK1mA+pMAY/iAQARyrEDKdezP4LL27569y//NvyJ/7jgRTIWWzUEvn4bZcGpoBvsq7WZktDcXis/SbLpkg//OmaV40a/MBvT3gIgIRoEl5NSurlYio9PG8G4n50KzNl+Z5eQXG1Zr3Adb0EUkD5bsIfZn1Rspnn1l0hZFERF9LOG37u5JMzWU5fWd6ahBuMN5HJC0EIsiaSzvVpA3FfvxPnTKvc3wu2+Q72z4f9fQIySKACqV5H/I9fjM1g2DZkm+RFImIYXw+Kk171Ds1F+fxaFCq12lMx9g4NQj3UTWDILmwzHrp9g4MFOWMU0+Rv/z1aNnnUKEyVDMjAqY+H9VGYNpPHW60Rwg9SpAVAhEEyaWdarmDUykqVIYGHu8d/ESe2fG+dPc2NqVi4vNRadojHoH571dNMtojhB4lyAqBCILkyk610sGpVLW23yFIEqzFB/QkeQx5fz6SjMA827XX6NQcU4PICoEIguTCTrXawSmmUzWPLrhErpjcfA6Aq5IGa/VMqeT9+UgyAvNR31EZPXK4seZxJpr3IQwkqyJILjR+qnVwUpovMqxQCDYISRKsVZpSsenzkXRkZX7nuBOvX7o9WU/N5d28D+EgEEGQXNipujJ9ZFKSYK2R9yzvz0fSkRUdyTHZPI7mdcgCUzMIViPLrOfJhekj0xoNwpK8Z3l+PuqZ9tDgp54VeU2vCAzUQiCCoEs6dYdq606VOfn0g7B637O8DrrxCIzmuuhvLtYYgalnRd4smH59+IVABMGwrUtm2genENUK1iSF9yyvg24zIzC2taEH6kGLdwTB5dbUrgVQpv5vVbWdmSvvWb1BBZ8P2Ii1ZoCSHfvMB7dUTGqMh+u3Lptl7Vmkr2e8af1d5Q7GHW2tcsuMc2XSmJFevWe+BNjwW28dx2+mZuA9l7qohjQnn+aZfIgJlK4tUwBUQvkuvEcZbBgLyqW9yJtPATZgMwIReI8yWLuwims6CLDhCwIReM+FLqohCflMXoOrbbsPycauvdF1M8EWATZ8QY4IvJdGGayvyaImhHomn3Z1C31m4AtGRBCEZlpT6wFEq25uWbNdlq7riq71diN5DAjzTD6rnBjblykAkqB8F0FppEcD5ZHZlFPXOpO3uZzapvJx+ojARpTvAimUwVIemY3QOsZmXT4eYuky/MLUDFBByEmVWQtpFdc8cmJCK12GXxgRASoINakyL6GcyYeYEwPUg0AEaPLAcPBwfzSN49sBNA8+dowtRXULUB1TM0CD/Udi9z//BlU0qIjqFqA6AhGggQNIqWbKMOG/kHJigHpRvgs0UB4pAZSd2sKnZnI+/S1ANZTvwjsmd+BxUuWT//FuNA3j8iq+rvGtR0YIOTFAvQhEYD0bDkZ6ABkzqjXRc6miSUelZnLxNBhTGoAfyBFBcK2xG0UZZn5YoRcIB4EIrGXbwYhVfPNDM7kwpLkaMdzF1AyCbY1dr9Bak5tEMzn/2TDlCjswIgJr2Xgwcr0M05UzUKbB/GbTlCvMY0QE1rL1YORqa3KXzkDpRuovFpNEKUZEYC2bczJcW2TMtTNQupH6i/wflCIQgbU4GPmZ9BvKNBjcmXKFWUzNwGrxwah0SqHD0ikFG9mW9BvCNBjcm3KFOQQisB4Ho7DPQOlG6hfyf1CKQARO4GDUOM5AYRPK4FGKHBEg8KRfdcapp8hAsWhdnogrXCmLtgX5PxiM1XeBABYKfO/gJ/LQv//f6P5qX3hby3ldLIv+wY1fkM+MbGU6sQpWI/ZXPcdvAhEgkIPjGaedEl3/5ZOjFX8uHir/zuzPyqQxIzk4NLgwXzkEeQhJL4EIEK5KB8c4yFh63RRZ+7//S/7y18oByWAcQCufzc98cEvViqTB4lCOqQeEoLeO4zc5IkBgXSv/ZXvyIMTWpmc25GTUKot2qWcLYBJVM0BgPUM+6ksehNjYdtuWVvWNlDvb3LMFMIUREcAjWfUCsaXttk2t6pspd7a1ZwtgAoEI4JGkB8fRI4dXLee18QBqW6v6JGXRldCzBfg7AhEgwIUCV82bduK2KwdQ2xZLq7YWkli4UCNgKwIRwLOeDF+Z1nEir0MqdK38x4vKN5Sy+QBqY6v6So25yqFrKFAeyaqAB8olcBYKIoOL80sXCixdw6dS0zNbDqC2tqovtxbSn/uOyP3Ps1AjkASBCOB4t8dKfUPiVIlvXjVJZk/tKPt3lK7h8/mO061d6djmxdLKrYU0ZxoLNQJJ0NAMsLA0NK2mWvHBeeuyWYkPgjYHYnHQVWnUhmZhgB1oaAY4XhpqMoEzPruf1zk+urYlCFEslgb4h6kZIGFH0kYaemU9umBjAqeJnAybRm0A1IdABKhzZCFpR8w8pnlsTeBsRpLgrVxOBgA3EYgAGYwsVEogjad50ppGsDmBM4QcHQDNI0cESHlkIc8OoNWaatlSdmtTjo4Ni+UBGIoRESDlkYUspnmSJHDaWnZrMkdnMEZbADsRiACDRhb0zLvQZEMvEwmkridwZh285TVVBqB+TM0AKZeGmkogtbns1mTwZttieQCGYkQESHlkwbcE0jxkGbzlPVUGoD6MiAApjyz4lEBq26rBjQRvIfZaAVySeSDS398vnZ2dUigUpKurK+uXA6xAB1CxJnjzsdcK4JPMp2a+973vybhx4+T3v/991i8FWMX1BNK8ZVX9w1QZEHAg8sILL8hvfvMb+dWvfhX9GwhNyB1AG2lvn0XwlmZFFACHApH9+/fLokWLZMOGDXLaaaclnsbRy+DV+wC4p5meHVkEbz70WgF8lUkgUiwWZeHChfLtb39bLrvsMnnvvfcS/dzq1atl5cqVWWwSgJzY2rODqTLAg2TV5cuXR0mn1S5vvvmmPPzww3L48GFZsWJFXRujz+/p6Tlx2bNnT71/DwCDbO/Z4XKvFcBXdY2I3H333dFIRzWTJ0+WLVu2yLZt26S1tXXIYzo6smDBAlm7dm3Zn9Xnl/4MAHeE0rOjkfwXACkEImeddVZ0qeUnP/mJrFq16sTtffv2yZw5c2T9+vVy+eWX1/OSABwSQs8O1qwBHMgROffcc4fcPv3006PrCy64QCZMmJDFSwKwgO89O2zNfwFcRmdVAE50SDXN9vwXwFW5BCKTJk2KKmm0wyoAf/nc3r6e/BcAyTEiAiBVvra3DyH/BTCB1XcBpM7Hnh2+578AphCIAMiEb+3tWbMGyAZTMwAQeP4LYBKBCAAEnv8CmMTUDAAEnv8CmEQgAgCB578AJjE1AwAAjGFEBECwWLwOMI9ABECQWLwOsANTMwCCEy9eV9qyPV68Th8HkA8CEQBBYfE6wC4EIgCCwuJ1gF0IRAAEhcXrALsQiAAIStJF6d7e/7Fs230o0yka/d36Ghu79mb+WoCtqJoBEJRai9fFHnnpneiSVSUNVTvA3zAiAiA3NowAVFu8rpwsKmmo2gH+rlAsFq0dC+zt7ZX29nbp6emRtrY205sDwKMRgHLbU0nh+MJ2W5fNarrhmQZfMx/cUvF103wtwIXjNyMiADJn4wiABj96sH9m0RWy5NoLqj43zUoaqnaAoQhEAATbtyNevO6zZ4/KrZKGqh1gKAIRAJlyYQQgaSVN0ufZ8lqACwhEAGTKhRGAuJKmUkaG3q+P6/Ncei0XkocByncBZMqFEYC4kkbzVTQQGHw4jgMGfTyN5NE8X8ul5GGEixERAJmeOds0AlCNHnwfu/WSqGJlML2t96d5cM7ztVxJHka4KN8FLKMHec2X0KkKHSXQA7TJMs40zpzjA59UGAHI4+Br4/tv4v+a8mHYdvwmEAEsYttweRxAlO4kGgkgbPvbQqUjWres2V7zeVrWrBVFQNbHb3JEAEtUOujHw+V5jxrUKrvVYEQfv35qR6IzZ912fa5Noz0hciF5GGEhEAEskPZBP++y26RnznHfDpjjQvIwwkKyKmABG3ttcObsJ1eShxEOAhHAAjYe9Dlz9lO1Rf/yLB8GYgQigAVsPOhz5uwv0+XDwGDkiAAWiA/6mpharFJSmedB35bGW8gGycOwBSMigAVsHS7nzNlvcfLwvM7x0TVBCEygjwhgEVt7bdjWZA2A3WhoBjiMgz4A19HQDHAYvTYAhIQcEQAAYAyBCAAAMIZABAAAGEMgAgAAjCEQAQAAxhCIAAAAYwhEAACAMQQiAADAGAIRAABgjNWdVePu89oqFgAAuCE+bidZRcbqQOTw4cPR9cSJE01vCgAAaOA4rmvOOLvo3cDAgOzbt09GjRolhUIh9WhNA5w9e/awoF6GeJ/zwfucD97nfPA+u/9ea2ihQci4ceNk2LBh7o6I6MZPmDAh09fQN54PevZ4n/PB+5wP3ud88D67/V7XGgmJkawKAACMIRABAADGBBuItLa2yr333htdIzu8z/ngfc4H73M+eJ/Deq+tTlYFAAB+C3ZEBAAAmEcgAgAAjCEQAQAAxhCIAAAAY4IMRB599FGZNGmSjBgxQi6//HLZsWOH6U3yzm9/+1v56le/GnXV0664GzZsML1JXlq9erVMnz496j48duxYmT9/vrz11lumN8s7jz32mFx00UUnmj5deeWV8sILL5jeLO898MAD0f7jzjvvNL0pXrnvvvui93Xw5cILLzS2PcEFIuvXr5e77rorKlfauXOnXHzxxTJnzhw5cOCA6U3zSl9fX/TeatCH7LzyyiuyePFi2b59u2zevFmOHj0qN9xwQ/T+Iz3a4VkPiq+99pr87ne/k1mzZsm8efPkD3/4g+lN89arr74qjz/+eBQAIn1f/OIX5YMPPjhx2bp1q5gSXPmujoDoGeQjjzxyYj0b7bN/xx13yPLly01vnpc02n722Wejs3Vk68MPP4xGRjRAufrqq01vjtdGjx4tP/zhD+Wb3/ym6U3xzscffyyXXHKJ/PSnP5VVq1ZJZ2enPPTQQ6Y3y6sRkQ0bNkhXV5fYIKgRkSNHjkRnNLNnzx6yno3e3rZtm9FtA9LQ09Nz4iCJbBw7dkzWrVsXjTrpFA3Sp6N8N95445B9NdL19ttvR1PnkydPlgULFsj7778vpli96F3aDh48GO1Ezj777CH36+0333zT2HYBadDRPZ1Lv+qqq2TatGmmN8c7r7/+ehR4fPrpp3L66adHo3xTp041vVne0SBPp811agbZzQw8+eST8vnPfz6allm5cqV8+ctfll27dkX5ZnkLKhABfD+L1B2Jyblen+lOW4eyddTpl7/8pXzjG9+IpsAIRtKjS9EvXbo0ynfSYgJk4ytf+cqJf2sOjgYm5513nvziF78wMtUYVCAyZswYaWlpkf379w+5X293dHQY2y6gWUuWLJHnnnsuqlbSxEqkb/jw4TJlypTo35deeml0xv7jH/84SqhEOnTqXAsHND8kpqPY+rnWvL7+/v5oH450nXHGGfK5z31O3nnnHTFhWGg7Et2BvPjii0OGs/U2c71wkeaaaxCi0wRbtmyR888/3/QmBUP3HXpgRHquu+66aApMR57iy2WXXRblMOi/CUKySw7evXu3nHPOOWJCUCMiSkt3dUhVP9wzZsyIMrE16ey2224zvWnefbAHR9fvvvtutCPRJMpzzz3X6Lb5Nh3z9NNPy8aNG6O53e7u7uj+9vZ2OfXUU01vnjdWrFgRDWfrZ/fw4cPRe/7yyy/Lr3/9a9Ob5hX9DJfmN40cOVLOPPNM8p5S9N3vfjfq86TTMfv27YvaWWiQd8stt4gJwQUiN998c1TieM8990Q7bS0L27Rp00kJrGiO9lq49tprhwSASoNATZJCeo221DXXXDPk/ieeeEIWLlxoaKv8o9MFX//616PEPg3ydF5dg5Drr7/e9KYBdfvTn/4UBR2HDh2Ss846S2bOnBn1ItJ/mxBcHxEAAGCPoHJEAACAXQhEAACAMQQiAADAGAIRAABgDIEIAAAwhkAEAAAYQyACAACMIRABAADGEIgAAABjCEQAAIAxBCIAAMAYAhEAACCm/H8UA5iSv7mNVAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.scatter(x, t)" ] @@ -172,11 +227,125 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " [1.00000000e+00, 5.05050505e-02, 2.55076013e-03],\n", + " [1.00000000e+00, 1.01010101e-01, 1.02030405e-02],\n", + " [1.00000000e+00, 1.51515152e-01, 2.29568411e-02],\n", + " [1.00000000e+00, 2.02020202e-01, 4.08121620e-02],\n", + " [1.00000000e+00, 2.52525253e-01, 6.37690032e-02],\n", + " [1.00000000e+00, 3.03030303e-01, 9.18273646e-02],\n", + " [1.00000000e+00, 3.53535354e-01, 1.24987246e-01],\n", + " [1.00000000e+00, 4.04040404e-01, 1.63248648e-01],\n", + " [1.00000000e+00, 4.54545455e-01, 2.06611570e-01],\n", + " [1.00000000e+00, 5.05050505e-01, 2.55076013e-01],\n", + " [1.00000000e+00, 5.55555556e-01, 3.08641975e-01],\n", + " [1.00000000e+00, 6.06060606e-01, 3.67309458e-01],\n", + " [1.00000000e+00, 6.56565657e-01, 4.31078461e-01],\n", + " [1.00000000e+00, 7.07070707e-01, 4.99948985e-01],\n", + " [1.00000000e+00, 7.57575758e-01, 5.73921028e-01],\n", + " [1.00000000e+00, 8.08080808e-01, 6.52994592e-01],\n", + " [1.00000000e+00, 8.58585859e-01, 7.37169677e-01],\n", + " [1.00000000e+00, 9.09090909e-01, 8.26446281e-01],\n", + " [1.00000000e+00, 9.59595960e-01, 9.20824406e-01],\n", + " [1.00000000e+00, 1.01010101e+00, 1.02030405e+00],\n", + " [1.00000000e+00, 1.06060606e+00, 1.12488522e+00],\n", + " [1.00000000e+00, 1.11111111e+00, 1.23456790e+00],\n", + " [1.00000000e+00, 1.16161616e+00, 1.34935211e+00],\n", + " [1.00000000e+00, 1.21212121e+00, 1.46923783e+00],\n", + " [1.00000000e+00, 1.26262626e+00, 1.59422508e+00],\n", + " [1.00000000e+00, 1.31313131e+00, 1.72431385e+00],\n", + " [1.00000000e+00, 1.36363636e+00, 1.85950413e+00],\n", + " [1.00000000e+00, 1.41414141e+00, 1.99979594e+00],\n", + " [1.00000000e+00, 1.46464646e+00, 2.14518927e+00],\n", + " [1.00000000e+00, 1.51515152e+00, 2.29568411e+00],\n", + " [1.00000000e+00, 1.56565657e+00, 2.45128048e+00],\n", + " [1.00000000e+00, 1.61616162e+00, 2.61197837e+00],\n", + " [1.00000000e+00, 1.66666667e+00, 2.77777778e+00],\n", + " [1.00000000e+00, 1.71717172e+00, 2.94867871e+00],\n", + " [1.00000000e+00, 1.76767677e+00, 3.12468115e+00],\n", + " [1.00000000e+00, 1.81818182e+00, 3.30578512e+00],\n", + " [1.00000000e+00, 1.86868687e+00, 3.49199061e+00],\n", + " [1.00000000e+00, 1.91919192e+00, 3.68329762e+00],\n", + " [1.00000000e+00, 1.96969697e+00, 3.87970615e+00],\n", + " [1.00000000e+00, 2.02020202e+00, 4.08121620e+00],\n", + " [1.00000000e+00, 2.07070707e+00, 4.28782777e+00],\n", + " [1.00000000e+00, 2.12121212e+00, 4.49954086e+00],\n", + " [1.00000000e+00, 2.17171717e+00, 4.71635547e+00],\n", + " [1.00000000e+00, 2.22222222e+00, 4.93827160e+00],\n", + " [1.00000000e+00, 2.27272727e+00, 5.16528926e+00],\n", + " [1.00000000e+00, 2.32323232e+00, 5.39740843e+00],\n", + " [1.00000000e+00, 2.37373737e+00, 5.63462912e+00],\n", + " [1.00000000e+00, 2.42424242e+00, 5.87695133e+00],\n", + " [1.00000000e+00, 2.47474747e+00, 6.12437506e+00],\n", + " [1.00000000e+00, 2.52525253e+00, 6.37690032e+00],\n", + " [1.00000000e+00, 2.57575758e+00, 6.63452709e+00],\n", + " [1.00000000e+00, 2.62626263e+00, 6.89725538e+00],\n", + " [1.00000000e+00, 2.67676768e+00, 7.16508520e+00],\n", + " [1.00000000e+00, 2.72727273e+00, 7.43801653e+00],\n", + " [1.00000000e+00, 2.77777778e+00, 7.71604938e+00],\n", + " [1.00000000e+00, 2.82828283e+00, 7.99918376e+00],\n", + " [1.00000000e+00, 2.87878788e+00, 8.28741965e+00],\n", + " [1.00000000e+00, 2.92929293e+00, 8.58075707e+00],\n", + " [1.00000000e+00, 2.97979798e+00, 8.87919600e+00],\n", + " [1.00000000e+00, 3.03030303e+00, 9.18273646e+00],\n", + " [1.00000000e+00, 3.08080808e+00, 9.49137843e+00],\n", + " [1.00000000e+00, 3.13131313e+00, 9.80512193e+00],\n", + " [1.00000000e+00, 3.18181818e+00, 1.01239669e+01],\n", + " [1.00000000e+00, 3.23232323e+00, 1.04479135e+01],\n", + " [1.00000000e+00, 3.28282828e+00, 1.07769615e+01],\n", + " [1.00000000e+00, 3.33333333e+00, 1.11111111e+01],\n", + " [1.00000000e+00, 3.38383838e+00, 1.14503622e+01],\n", + " [1.00000000e+00, 3.43434343e+00, 1.17947148e+01],\n", + " [1.00000000e+00, 3.48484848e+00, 1.21441690e+01],\n", + " [1.00000000e+00, 3.53535354e+00, 1.24987246e+01],\n", + " [1.00000000e+00, 3.58585859e+00, 1.28583818e+01],\n", + " [1.00000000e+00, 3.63636364e+00, 1.32231405e+01],\n", + " [1.00000000e+00, 3.68686869e+00, 1.35930007e+01],\n", + " [1.00000000e+00, 3.73737374e+00, 1.39679625e+01],\n", + " [1.00000000e+00, 3.78787879e+00, 1.43480257e+01],\n", + " [1.00000000e+00, 3.83838384e+00, 1.47331905e+01],\n", + " [1.00000000e+00, 3.88888889e+00, 1.51234568e+01],\n", + " [1.00000000e+00, 3.93939394e+00, 1.55188246e+01],\n", + " [1.00000000e+00, 3.98989899e+00, 1.59192939e+01],\n", + " [1.00000000e+00, 4.04040404e+00, 1.63248648e+01],\n", + " [1.00000000e+00, 4.09090909e+00, 1.67355372e+01],\n", + " [1.00000000e+00, 4.14141414e+00, 1.71513111e+01],\n", + " [1.00000000e+00, 4.19191919e+00, 1.75721865e+01],\n", + " [1.00000000e+00, 4.24242424e+00, 1.79981635e+01],\n", + " [1.00000000e+00, 4.29292929e+00, 1.84292419e+01],\n", + " [1.00000000e+00, 4.34343434e+00, 1.88654219e+01],\n", + " [1.00000000e+00, 4.39393939e+00, 1.93067034e+01],\n", + " [1.00000000e+00, 4.44444444e+00, 1.97530864e+01],\n", + " [1.00000000e+00, 4.49494949e+00, 2.02045710e+01],\n", + " [1.00000000e+00, 4.54545455e+00, 2.06611570e+01],\n", + " [1.00000000e+00, 4.59595960e+00, 2.11228446e+01],\n", + " [1.00000000e+00, 4.64646465e+00, 2.15896337e+01],\n", + " [1.00000000e+00, 4.69696970e+00, 2.20615243e+01],\n", + " [1.00000000e+00, 4.74747475e+00, 2.25385165e+01],\n", + " [1.00000000e+00, 4.79797980e+00, 2.30206101e+01],\n", + " [1.00000000e+00, 4.84848485e+00, 2.35078053e+01],\n", + " [1.00000000e+00, 4.89898990e+00, 2.40001020e+01],\n", + " [1.00000000e+00, 4.94949495e+00, 2.44975003e+01],\n", + " [1.00000000e+00, 5.00000000e+00, 2.50000000e+01]])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "X = #TODO" + "X = np.ones((3,len(x)))\n", + "X[1,] = x\n", + "X[2,] = x**2 \n", + "X = X.T\n", + "X " ] }, { @@ -210,9 +379,19 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-528891.2540468314\n", + "-1948608.4488494052\n", + "-7754047.065657895\n" + ] + } + ], "source": [ - "w0, w1, w2 = #TODO\n", + "w0, w1, w2 = (X.T @ X)@X.T@t\n", "pred_y = w0 + w1 * x + w2 * x ** 2" ] }, @@ -234,9 +413,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGsCAYAAADQat0+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASx1JREFUeJzt3QmczdX/x/H32PctewgtlhZEZKkoW7QoEZElqZ9QikSLohBaf5Lyq1Ap2z9CpWRJSdbIXorsS8nOYGb+j8/320wzmrsMc+/c5fV8PL6Pa+499zr3JvftnM85JyYhISFBAAAAESRTRncAAAAgvRFwAABAxCHgAACAiEPAAQAAEYeAAwAAIg4BBwAARBwCDgAAiDgEHAAAEHEIOAAAIOIQcAAAQMSJ+oCzcOFC3XrrrSpZsqRiYmI0ffr0NL/Gl19+qWuvvVZ58+ZVkSJF1LJlS23dujUg/QUAAL5FfcA5duyYqlSpolGjRp3T87ds2aLbb79dN954o1atWuWEnT/++EN33nlnuvcVAAD4J4bDNv9hIzjTpk1TixYtku6LjY3VU089pY8//lgHDx7UFVdcoWHDhql+/frO41OnTlXbtm2ddpkyuXlx5syZTuix+7JmzZph7wcAgGgV9SM4vvTo0UOLFy/WxIkT9dNPP6lVq1Zq2rSpfvnlF+fx6tWrO8Fm7NixiouL06FDh/TBBx+oYcOGhBsAADIIIzheRnC2bdum8uXLO7dWo5PIwkvNmjU1ZMgQ5+dvvvlGrVu31p9//umEnNq1a+vzzz9XgQIFMuy9AAAQzRjB8WLNmjVOYLnsssuUJ0+epMsCza+//uq02bNnj7p27aqOHTtq2bJlzmPZsmXTXXfdJbIjAAAZI0sG/b5h4ejRo8qcObNWrFjh3CZnQcdYcXL+/Pk1fPjwpMc+/PBDlS5dWkuWLHFWVwEAgOAi4HhRrVo1ZwRn3759uu6661Jtc/z48aTi4kSJYSg+Pj4o/QQAAClF/RSVjdLY8m67Epd926+t7samptq1a6cOHTrok08+cR5bunSphg4dqs8++8xp37x5c2dqatCgQU7h8cqVK9W5c2dddNFFTkACAADBF/VFxgsWLFCDBg3+db/V1IwbN06nT5/WCy+8oPfff187d+5U4cKFnWmngQMH6sorr3Ta2gorm6L6+eeflStXLqfI2JaSV6xYMQPeEQAAiPqAAwAAIk/UT1EBAIDIQ8ABAAARJypXUdnqpl27djmHY9rmfgAAIPRZVc2RI0eczXfPXsF8tqgMOBZubJ8aAAAQfrZv365SpUp5bROVAcdGbhI/oHz58mV0dwAAgB8OHz7sDFAkfo97E5UBJ3FaysINAQcAgPDiT3kJRcYAACDiEHAAAEDEIeAAAICIQ8ABAAARh4ADAAAiDgEHAABEHAIOAACIOAQcAAAQcaJyo79AiYtP0NItB7TvyEkVzZtD1S8qqBW//5X0c81yhZx2gWgTyNemj/QxWt9HRv/+9JE+RkIfa5YrpMyZYiIz4IwaNUojRozQnj17VKVKFY0cOVI1a9b02H7KlCl65plntHXrVl166aUaNmyYmjVrluKwrWeffVb/+9//dPDgQdWtW1ejR4922maU2Wt3a+DM9dp96GTSffbfMz7hnzYFcmV1bg8eP53ubQL52vSRPkbr+8jo358+0sdI6GOJ/Dn07K2V1fSKEgqmmARLCwE0adIkdejQQW+99ZZq1aql1157zQkwmzZtUtGiRf/V/vvvv9f111+voUOH6pZbbtFHH33kBJyVK1fqiiuucNrYz/b4+PHjVa5cOScMrVmzRuvXr1eOHDn8Ossif/78OnToULoc1fDdJ/PUYHUzxcXEpbg/oB8sAABhIkZZ9fldv553yEnL93fAA46FmmuuuUZvvPGG83N8fLxzUFbPnj3Vr1+/f7W/++67dezYMc2aNSvpvmuvvVZVq1Z1QpJ1145J7927t/r06eM8bm+0WLFiGjdunNq0aRPUgONMS1Wqpfqtl+kUE34AAPxbQhZdm322vnvixvOarkrL93dAi4xPnTqlFStWqGHDhv/8hpkyOT8vXrw41efY/cnbmyZNmiS137JlizPVlbyNvVkLUp5eMzY21vlQkl/pxeYZMx0/nm6vBwBAJNp96KTznRksAQ04f/zxh+Li4pzRleTsZwspqbH7vbVPvE3La9p0loWgxMtGkNKLFVHlOv1P3Q0AAPD8nRksUbFMvH///s5wVuK1ffv2dHttqxDPdTo23V4PAIBIVTSv7zrZsAg4hQsXVubMmbV3794U99vPxYsXT/U5dr+39om3aXnN7NmzO3N1ya/0YsvfcscRcAAA8MZWUyUuIw+GgJbFZsuWTdWrV9fcuXPVokWLpCJj+7lHjx6pPqd27drO47169Uq6b86cOc79xlZNWZCxNlZ4bKymZsmSJerWrZuCzYqlCumMsqVcQBXWEmJiFB8TowTFOL9mNRgA4HxXUdlS8WDuhxPwdT+PPfaYOnbsqBo1ajh739gycVsl1blzZ+dxW0J+4YUXOnUy5pFHHtENN9ygl19+Wc2bN9fEiRO1fPlyjRkzxnk8JibGCT8vvPCCs+9N4jJxW1mVGKKCLVuTRtoyf7d27/pTWU4cV87TsU5dTs7TVp8Tq8wJ8QovFmn+iTUHcubT2mIXa03xS/RTiUv1W/krtD/fBVGzhwN9jN73kdG/P32kj5HQxxIZtA9OwAOOLfvev3+/BgwY4BQB26jL7Nmzk4qEt23b5qysSlSnTh1n75unn35aTz75pBNipk+fnrQHjunbt68Tkh544AFno7969eo5r+nPHjgBMWmSCksq+PdOxj8n2/Vx6dYD+nP/QRWPOaVq+TPZmnZt2rRDx/bu1wWxR1VGJ7Vv6y7F7d2nPEcOqsDRv6R9+5Swd58ynT6lUFDoxGFdv/VH50qUUKqUDlxeTXsqXaWE2nV0WbP6WrH3RETuwkkfo/d9ZPTvTx/pYyT0sWYG7WQc8H1wQlF6b/QXEPaf5a+/pF27pN273dudOyUrkE68tm2TDh5USMiWTape3RKqVK+eexW22AcAQPoIqY3+QlFYBBx/WcDZulX67TfbJMi93bxZ+uUX6fffregp4/p2+eXS9ddLN9zgXh6KwAEA8AcBJ5oCjjenTrmhZ9MmacMGaeNG93b9eunIkeD3p3Jl6cYb3csCT6HgVdMDAMIfAceHqAk4nth/8h07pLVr/7lWr3aDz+l/CsMCKiZGuuYaqVEjqXFjO4/DneYCAMADAo4PUR9wvI342AjPqlXSjz9KK1a4t8eOBf73zp3bHdm5+Wb3Kls28L8nACCsEHB8IOCkQVyc9PPP0vLl0tKl0pIlbgAK9EhPpUpu0LnlFrdgOau79BAAEL0OE3C8I+Ccp5Mn3ZBjh5t+/720aJG70itQChSQmjZ1w06zZlLBgoH7vQAAIYuA4wMBJ53ZHyFbsWVB59tvpYUL3amuQMicWapfX7rjDun226VSpQLz+wAAQg4BxwcCThDs2yd99520YIE0f75byBwIVqjcsqV7XXJJYH4PAEBIIOD4QMDJAHY4qoWduXPtcDF37570ZmeT3XWX1KqVdNll6f/6AIAMRcDxgYCTweyP3K+/ukHHLgs9hw+n7+9RrZrUpo3UujUrsgAgQhBwfCDghBhbkWXFyl984V4//ZS+r2977Nxzjx2MJhUtmr6vDQAIGgKODwScEGebEH72mTRzpju6Y6u20qtA2TYWbN9espPnbe8dAEDYIOD4QMAJI8ePuyHn00+lGTOk/fvT53Ut3FhhcseO7qqsZCfaAwBCEwHHBwJOGG86aHvvTJ8uTZvmHiyaHsqUke69V+rUiZVYABDCCDg+EHAigP2xtfOzpk6Vpkxxd1tOD3YI6H33uauxcuVKn9cEAKQLAo4PBJwIY3+E162TJk+WJk6Ufvnl/F/T/ly0bSt17SpVr54evQQAnCcCjg8EnAhmf5ztGAkLOpMmuTssny8LOA884AaevHnTo5cAgHNAwPGBgBMl7I+2LT//8EN3dOfAgfN7vTx53OXmDz0kVamSXr0EAATg+5ulI4hcMTFS3brS6NHuYaC2Estqa7JlO7fXO3pUGjPG3THZTjj/6CMpNja9ew0ASAcEHEQHCzW33eYWJFvYefNNqVatc389O1i0XTupdGnp6aelnTvTs7cAgPNEwEH0KVRI6tZN+uEHaf166fHHpWLFzu21bF+ewYPd4yDsaAgLPtE36wsAIYeAg+hWqZI0fLi0fbu7v46N8tiOx2l15oxb1GxTV3bCudX9nDoViB4DAPxAwAFM1qzS7be7dTrbtkkvvCBddNG5vdaKFe7GgeXKSUOHnn9xMwAgzQg4wNlKlpSeeso98dwO/7Rzq87lKIddu6Qnn5RKlZK6d3dfDwAQFAQcwBObqmra1D0WYutW6Zlnzq1W58QJt6j5ssukVq2kpUsD0VsAQDIEHMAftlpq0CB3+spqba67Lu2vER/vHi1hq7fsSIjPP6cgGQAChIADpHW5eevW0sKF0o8/uudWZc+e9tex5zdvLlWr5u66bAeJAgDSDQEHOFe24d+770o7dkhDhri1O2llB4baERAVKkj/+x8rrwAgnRBwgPNVuLDUv7+0ZYu7PPxcDue0AmQ77+rii6U33nDrdgAA54yAA6Tn9JXtbrxsmTsFZcvO7biItLDRoJ49pfLlpZdflo4dC1RvASCiEXCA9GahxoqQbePADRukrl3TXqezZ4/Up4+7l86IEQQdAAilgHPgwAG1a9fOOfGzQIEC6tKli47agYVe2vfs2VMVKlRQzpw5VaZMGT388MPOqaHJxcTE/OuaaIWaQKix2ho7oPP33929dQoUSPtREH37EnQAIJQCjoWbdevWac6cOZo1a5YWLlyoB6zOwINdu3Y510svvaS1a9dq3Lhxmj17thOMzjZ27Fjt3r076Wphm7EBocr2z7HdkW2ZuQWVEiXOPei88go1OgDgQ0xCQmA24tiwYYMqV66sZcuWqUaNGs59FlaaNWumHTt2qKSfK06mTJmi9u3b69ixY8qSJYvb6ZgYTZs27ZxDzeHDh5U/f35nZMhGl4Cgi42V3n9fGjbs3HY4Ttxt2cL/uSxTB4AwlJbv74CN4CxevNiZlkoMN6Zhw4bKlCmTlixZ4vfrJL6JxHCTqHv37ipcuLBq1qyp9957T95yWmxsrPOhJL+ADGWhxGpzNm50V17ZoZ9pPQbCjn+wKbCxY93DPgEAgQ84e/bsUdGiRVPcZyGlUKFCzmP++OOPP/T888//a1pr0KBBmjx5sjP11bJlSz300EMaOXKkx9cZOnSok/gSr9K2Ky0QCiy428qrtWvdXY5tb520sNoe22zwyiul//s/dkYGgHMNOP369Uu1yDf5tdH+VXqebJSlefPmzjTXc889l+KxZ555RnXr1lW1atX0xBNPqG/fvhphdQ0e9O/f3xkJSry2b99+3v0D0pUd5tmypbRypbv6Kq1Bx/6fu+suqWZN6euvA9VLAIjcgNO7d2+nvsbbVb58eRUvXlz79u1L8dwzZ844K6XsMW+OHDmipk2bKm/evE6tTdasWb22r1WrllPXY1NRqcmePbszzZX8AkJ2ibntn3OuQWf5cqlRI6lxY/coCQCIUikLW/xQpEgR5/Kldu3aOnjwoFasWKHqf+/sOm/ePMXHxzuBxNvITZMmTZxQMmPGDOXIkcPn77Vq1SoVLFjQeQ4QERKDzm23SZ9+Kg0YIK1Z4//z58xxL5v+stVbZcsGsrcAED01OJUqVXJGYbp27aqlS5dq0aJF6tGjh9q0aZO0gmrnzp2qWLGi83hiuGncuLGzYurdd991frZ6Hbvi/j6McObMmXrnnXecZeSbN2/W6NGjNWTIEGf/HCAig46tFly1yj2U04qK02LCBPc5vXtLf/0VqF4CQOhJCKA///wzoW3btgl58uRJyJcvX0Lnzp0Tjhw5kvT4li1brCIyYf78+c7Pdms/p3ZZW/PFF18kVK1a1XnN3LlzJ1SpUiXhrbfeSoiLi/O7X4cOHXJe026BsHL6dELC+PEJCWXLWjlx2q5ChRISXnstISE2NqPfBQCck7R8fwdsH5xQxj44CHt26rjtkGzTT3v3pu25l1zi7r9zxx1pPysLAKJ9HxwAAT7Ys0cPd5PAwYOl/Pn9f+7mze6KrQYNKEQGELEIOEA4y51bevJJN+g89pgbfPz1zTeSLQCwDQfTOgoEACGOgANEggsukF5+Wdq0SWrf3v+pJ5uhfucd6dJL3WkrD1stAEC4IeAAkcSWg3/wgbRihZ2N4v/zjhyxXTylK66QPvsskD0EgKAg4ACRqFo16auv3LCSlnOurD7nlluk5s2ln38OZA8BIKAIOECksmmqZs2kn36S3npLOutsOK8+/9wdzenfXzp2LJC9BICAIOAA0XCg54MPSr/8IvXt638h8unT0osvuiNAdhBo9O0oASCMEXCAaGF7Rlgh8fr10p13+v88O5y2VSupSRO3iBkAwgABB4g2F18s/d//2eFw0lVX+f88O9vqyiulp5+WTpwIZA8B4LwRcIBoZRv92WqrUaOkggX9n7ayjQUvv9yt0wGAEEXAAaK9Puehh9z6HLvN5OdfCVu2uCut7rpL2rEj0L0EgDQj4ABwNwq0kRwb0alb1//n2VRX5crSyJFSXFwgewgAaULAAfCPqlWlhQulceP8X1ZumwQ+/LBUp460enWgewgAfiHgAEjJpqk6dnRXTPXs6f+01dKl7tlWthT9+PFA9xIAvCLgAEhdgQLSf/8rLV8u1azp33NsmmrECHe11dy5ge4hAHhEwAHg+9iH77+XRo+W8uf37zm//eaehdWli/TXX4HuIQD8CwEHgG+ZM0v/+Y87bdWunf/Pe+89dydkK0YGgCAi4ADwX7Fi0ocfugd52oaB/ti7111Obrsh268BIAgIOADSrlEjac0a9zBO20vHH3aelW0Q+NFHnGsFIOAIOADOTc6c0pAh0sqV0rXX+vecP/90p7huv13atSvQPQQQxQg4AM6PrZj67jvp9del3Ln9e87Mme5ojk13MZoDIAAIOADSpwjZNvtbt05q2tS/5xw8KN17r3uyObU5ANIZAQdA+rnoIvcQzg8+kAoV8u8506e7ozmTJgW6dwCiCAEHQPqKiZHat3dHc2x0xt/anDZt3Mt+DQDniYADIDCKF3f3v5k8WSpSxL/n2CiO1fR88UWgewcgwhFwAASW7X+zfr07OuOP3bulZs2kBx5wD/IEgHNAwAEQeIULSx9/7O6F4+9ozv/+5x4TsXhxoHsHIAIRcAAET8uWbm2Ojer449dfpXr1pAEDpNOnA907ABGEgAMguGwEx+pyJk70b6VVfLz0/PNS3brSzz8Ho4cAIgABB0DGuPtuae1at97GH8uWuVNWNnXF5oAAMjLgHDhwQO3atVO+fPlUoEABdenSRUePHvX6nPr16ysmJibF9R87xTiZbdu2qXnz5sqVK5eKFi2qxx9/XGfOnAnkWwEQCCVKSLNmuaElTx7f7Y8fd4uPbaqL5eQAMirgWLhZt26d5syZo1mzZmnhwoV6wP5y8qFr167avXt30jV8+PCkx+Li4pxwc+rUKX3//fcaP368xo0bpwE2Rw8gPPfNuf9+6aef3Hobf0ybJlWpIs2bF+jeAQhTAQs4GzZs0OzZs/XOO++oVq1aqlevnkaOHKmJEydql49D9mxkpnjx4kmXjQAl+uqrr7R+/Xp9+OGHqlq1qm6++WY9//zzGjVqlBN6AISpcuWkBQukoUOlrFl9t9+5U2rYUHriCQqQAQQv4CxevNiZlqpRo0bSfQ0bNlSmTJm0ZMkSr8+dMGGCChcurCuuuEL9+/fXcRuWTva6V155pYoVK5Z0X5MmTXT48GFntCg1sbGxzuPJLwAheqZVv37SDz9IlSr5bm+1ODbCayM/v/0WjB4CiPaAs2fPHqc+JrksWbKoUKFCzmOe3HPPPc7ozPz5851w88EHH6i9bfue7HWThxuT+LOn1x06dKjy58+fdJUuXfo83x2AgLr6amnFCqlnT//aL10qVa3q7rUDAOcScPr16/evIuCzr40bN55zh6xGx0ZkbJTGanjef/99TZs2Tb/afhjnyILSoUOHkq7t27ef82sBCJKcOaX//lf67DPprH8spcp2Pb7nHum++6Rjx4LRQwAhLEtan9C7d2916tTJa5vy5cs7tTP79u1Lcb+tdLKVVfaYv6x+x2zevFkXX3yx89yl9q+1ZPbu3evcenrd7NmzOxeAMGTLyK0AuXNn/86oGjvW3f3Y9tqxc60ARKU0B5wiRYo4ly+1a9fWwYMHtWLFClWvXt25b968eYqPj08KLf5YtWqVc1vClpP+/bqDBw92wlPiFJit0rJC5MqVK6f17QAIBzYNbSM5I0dKfftaYZ339jaKXLOmOwJkK7RspRaAqBKwGpxKlSqpadOmzpJvG3FZtGiRevTooTZt2qhkyZJOm507d6pixYpJIzI2DWUroiwUbd26VTNmzFCHDh10/fXX66qrrnLaNG7c2Aky9957r1avXq0vv/xSTz/9tLp3784oDRDJLKQ8/LBkixQqVvTd/uRJd88cm7ZiYQEQdQK6D46thrIAc9NNN6lZs2bOUvExY8YkPX769Glt2rQpaZVUtmzZ9PXXXzshxp5n02EtW7bUzJkzk56TOXNmZ08du7XRHCtAthA0aNCgQL4VAKHC9r9ZvtwdmfGHHQlho8irVwe6ZwBCSExCQvTteW7LxG01lRUcJ99jB0CYmTTJHaXxZ4TGRnhtiospKyAqvr85iwpAeJ9nZXV6Vm/ji9XtWBjq0EHycWQMgPBHwAEQ/jsgf/utLfH0r/2HH7qBaP36QPcMQAYi4AAIf9mySS+9JFm9XqFCvttv2OCGHKvPARCRCDgAIsctt7jFxHXr+m5rmwG2beuuzOIcOyDiEHAARJZSpaT58939cvxhhcc33CDt2BHongEIIgIOgMhjp5EPG+ZOWRUs6Lu9He5p519ZMAIQEQg4ACJ7ymrlSumaa3y33b9fatjQreWJvt0zgIhDwAEQ2cqWlb77TurRw3fb+Hjp8cfd5ed2eCeAsEXAARAdq6ys1mbCBClXLt/tp0yxk36lTZuC0TsAAUDAARA97FwqO/uuQgX/l5LPmhWMngFIZwQcANHl8sulZcukVq18t7UjIG69VXr+eXf6CkDYIOAAiD5587rnWFlBcebMvtsPGCC1bEldDhBGCDgAopMduGnHO8yZIxUp4rv99OluXc4vvwSjdwDOEwEHQHRr0EBascK/AzsT63K+/DIYPQNwHgg4AFC6tLRwoXT//b7bHjwoNWsmvfwy++UAIYyAAwAme3ZpzBhp9Gh3J2RvrOC4Tx+pY0fp5Mlg9RBAGhBwACB5Xc5//uMe2VCsmO/2H3zgnmO1e3cwegcgDQg4AHA2O43c6nKsqNgX21fHjoKw9gBCBgEHAFJz4YXSggXuNJQvO3dK113n7oAMICQQcADAkxw5pLFjpVdflTL5+OvyxAmpdWvp2WfZFBAIAQQcAPBVl9OrlzR7tlSwoO/2gwZJbdu6gQdAhiHgAIA/GjVy620qVfLddvJkqX59io+BDETAAQB/XXKJtHixuw+OLxaGrEh59epg9AzAWQg4AJAW+fNLM2a4xzz4sn27uyLL2gMIKgIOAKSVHdBpB3W+957vTQGPHZNatJBef52dj4EgIuAAwLnq3FmaN08qXNh7Ows2Vqj88MPSmTPB6h0Q1Qg4AHA+6tWTlizxr/j4jTek22+XjhwJRs+AqEbAAYDzVb68W3zcuLHvtp9/7m4KuGNHMHoGRC0CDgCkV/HxZ59J3bv7bmsrq669Vvrpp2D0DIhKBBwASC9ZsrjTUFZQ7GvnYzvewaa3vvoqWL0DokpAA86BAwfUrl075cuXTwUKFFCXLl109OhRj+23bt2qmJiYVK8pyc54Se3xiRMnBvKtAID/rJh4+nQpd27v7awWx/bUsdVYAMIn4Fi4WbdunebMmaNZs2Zp4cKFeuCBBzy2L126tHbv3p3iGjhwoPLkyaObb745RduxY8emaNfClmECQKi49Vbp22+lkiW9t4uLk7p0kZ55hmXkQDqKSUgIzP9RGzZsUOXKlbVs2TLVqFHDuW/27Nlq1qyZduzYoZK+/qf/W7Vq1XT11Vfr3Xff/afTMTGaNm3aOYeaw4cPK3/+/Dp06JAzugQAAWPFxLfc4t+OxnZy+f/+53tvHSBKHU7D93fARnAWL17sTEslhhvTsGFDZcqUSUtsSaUfVqxYoVWrVjlTW2fr3r27ChcurJo1a+q9996Tt5wWGxvrfCjJLwAIilKl3JGcJk18tx0/3g1DLCMHzlvAAs6ePXtUtGjRFPdlyZJFhQoVch7zh43aVKpUSXXq1Elx/6BBgzR58mRn6qtly5Z66KGHNHLkSI+vM3ToUCfxJV42FQYAQZM3rzRzpnT//b7bWtHxDTdwUCcQ7IDTr18/j4XAidfGjRvPt186ceKEPvroo1RHb5555hnVrVvXmb564okn1LdvX40YMcLja/Xv398Zzkq8ttv5MAAQTDbtNGaMNHiw77Y//ijVri2lw9+lQLTKktYn9O7dW506dfLapnz58ipevLj27duX4v4zZ844K6vsMV+mTp2q48ePq0OHDj7b1qpVS88//7wzFZU9e/Z/PW73pXY/AARVTIz05JNS2bLuMQ+nTnlu+/vv7jLyWbPcPXMABDbgFClSxLl8qV27tg4ePOjU0VSvXt25b968eYqPj3cCiT/TU7fddptfv5fV6RQsWJAQAyA83HOPu7rKFkocOuS53Z9/SjfeKNk2Gc2bB7OHQNgLWA2O1c40bdpUXbt21dKlS7Vo0SL16NFDbdq0SVpBtXPnTlWsWNF5PLnNmzc7S8rvT2W+eubMmXrnnXe0du1ap93o0aM1ZMgQ9ezZM1BvBQDSX/36bvHxhRd6b3fihHt+1dixweoZEBECug/OhAkTnABz0003OcvD69WrpzE2B/2306dPa9OmTc5UVHK2KqpUqVJqnMq5LlmzZtWoUaOcEaKqVavq7bff1iuvvKJnn302kG8FANLflVdKP/wgXXGF771y7rtPGjKEvXKAjN4HJ5SxDw6AkHLwoHTHHdKCBb7bPvKI9Morvo+CACJQSOyDAwDwU4ECthOq1Lq177Z2ztW993ovUAZAwAGAkGCLJD7+2D3HypePPnLrco4dC0bPgLBEwAGAUGHTTq+9ZruT+m5rIz433eSutALwLwQcAAi1vXL69XNXTWXO7L2tHXtz/fW2JDVYvQPCBgEHAEKRbaj66adSzpze261f724IuHlzsHoGhAUCDgCEKtvcb84ctwjZm61b3ZDjz4nlQJQg4ABAKKtbV1q4UCpRwnu7vXvdQzoXLQpWz4CQRsABgHDYEPD776VLL/Xezo59aNRI+vLLYPUMCFkEHAAIB3ZA53ffSdWq+T7a4dZbpU8+CVbPgJBEwAGAcFG0qDR/vnTddd7bnT4ttWoljR8frJ4BIYeAAwDhJH9+dwrK1+ni8fHuSqw33ghWz4CQQsABgHBjS8enTZPuucd325493UM6gShDwAGAcJQ1q/TBB9JDD/lu+9RT7hV9ZysjihFwACCcj3awKSjb+dgXG8V59FFCDqIGAQcAwv1oBzu7yp/zq+wk8gcflOLigtEzIEMRcAAgEtgozqhRvtv9739Sx47SmTPB6BWQYQg4ABAprB7n/ffdqStvJkyQ2rZ1l5MDEYqAAwCR5N57pcmT3SJkb6ZOle66S4qNDVbPgKAi4ABApGnZUpo+Xcqe3Xu7GTOkFi3c3Y+BCEPAAYBI1KyZ9PnnUu7c3tvNnu0e7XDsWLB6BgQFAQcAItWNN0pffSXly+e93dy50s03S0eOBKtnQMARcAAgktWp4waYggW9t/v2WzfkHD4crJ4BAUXAAYBIV6OGNG+eVLiw93aLFklNm0qHDgWrZ0DAEHAAIBpUrSotWCAVK+a93eLFUuPG0sGDweoZEBAEHACIFpdfLn3zjVSypPd2S5dKjRpJf/0VrJ4B6Y6AAwDRpEIFaeFCqXRp7+2WL5caNiTkIGwRcAAg2lx8sTtdVaaM93YrVxJyELYIOAAQjcqXd6erypb13o6QgzBFwAGAaGXhxkKOhR1vCDkIQwQcAIhmNk1lIeeSS7y3I+QgzAQs4AwePFh16tRRrly5VKBAAb+ek5CQoAEDBqhEiRLKmTOnGjZsqF9++SVFmwMHDqhdu3bKly+f87pdunTR0aNHA/QuACAKlColzZ/vX8hp0oQl5IjugHPq1Cm1atVK3bp18/s5w4cP13//+1+99dZbWrJkiXLnzq0mTZro5MmTSW0s3Kxbt05z5szRrFmztHDhQj3wwAMBehcAECX8DTnLlrmbAbLjMUJcTIINmwTQuHHj1KtXLx30kfitGyVLllTv3r3Vp08f575Dhw6pWLFizmu0adNGGzZsUOXKlbVs2TLVsJ05nXPiZqtZs2basWOH83x/HD58WPnz53de30aCAAB/27FDatBA2rzZ9xEQdlBn3rzB6hmgtHx/h0wNzpYtW7Rnzx5nWiqRvYlatWppse2s6WywudiZlkoMN8baZ8qUyRnx8SQ2Ntb5UJJfAIDzGMn5/nv3xHJKBBCiQibgWLgxNmKTnP2c+JjdFi1aNMXjWbJkUaFChZLapGbo0KFOWEq8Svva4AoAolliyLH9crz57jvp1lul48eD1TMgMAGnX79+iomJ8Xpt3LhRoaZ///7OcFbitX379ozuEgCER8gpV857O9swsEULKVmtJBAKsqSlsdXHdOrUyWub8r72U/CgePHizu3evXudVVSJ7Oeqdkjc32327duX4nlnzpxxVlYlPj812bNndy4AQBrYaLeFnBtukH7/3XO7OXOku+6SPvlEypYtmD0E0ifgFClSxLkCoVy5ck5ImTt3blKgsVoZq61JXIlVu3Ztp1h5xYoVql69unPfvHnzFB8f79TqAADS2UUX/RNyvI1+f/aZ1KaNNGmSlDVrMHsIBLcGZ9u2bVq1apVzGxcX5/zaruR71lSsWFHTpk1zfm3TW7ba6oUXXtCMGTO0Zs0adejQwVkZ1cKGPyVVqlRJTZs2VdeuXbV06VItWrRIPXr0cFZY+buCCgCQRjZNZSHHpq28sb/P773XhtaD1TMgfUZw0sI27Bs/fnzSz9WqVXNu58+fr/r16zu/3rRpk1MTk6hv3746duyYs6+NjdTUq1fPWQaeI0eOpDYTJkxwQs1NN93krJ5q2bKls3cOACCArOB43jzp+uttxYfndjaCY39nv/eelClk1rEgCgV8H5xQxD44AHCO1q+X7B+p+/d7b2elBaNG2fB8sHqGKHA4HPfBAQCEgcqVpa+/lgoV8t5u9Gjp8cdtF9dg9QxIgYADAEibq65yV07lz++93csvS889F6xeASkQcAAAaXf11dKXX/o+qmHQIDtoMFi9ApIQcAAA58a257Dl4Tlzem/3xBPSm28Gq1eAg4ADADh3110nffqp7w3+uneXPvggWL0CCDgAgPPUqJE0daodDui9XefO7l45QBAQcAAA588O3ZwwwfveN3Fx0t13u7U7QIARcAAA6aN1a3eDP29On5buuMM9iRwIIAIOACD9dOwojRzpvc2JE9Itt0irVgWrV4hCBBwAQPrq0UMaMsR7Gzump3Fj6eefg9UrRBkCDgAg/fXvL/Xr572NHfdgBcreTikHzhEBBwAQGDaK89BD3tts2+aGHF9nWwFpRMABAASGHbRp9Tjt23tvt2mT1LSpnaQYrJ4hChBwAACBY8vGbWWVLSP3ZuVK6fbbpZMng9UzRDgCDgAgsLJmlSZPlurX995uwQKpbVvpzJlg9QwRjIADAAi8HDmkGTOkGjW8t5s+XXrwQSkhIVg9Q4Qi4AAAgsNOHv/iC6lSJe/tbErL1woswAcCDgAgeAoXlr76SipTxnu74cOlESOC1StEIAIOACC4SpWS5syRihTx3q5vX+n994PVK0QYAg4AIPguu8ydrrJpK2/uu0/67LNg9QoRhIADAMgY1atLn34qZcvm/QTyVq2kH34IZs8QAQg4AICM06CBNHGiu1+Ot8M5mzeXNmwIZs8Q5gg4AICMdccd0ttve29z4IB7OOeOHcHqFcIcAQcAkPHuv1964QXvbSzc3Hyz9NdfweoVwhgBBwAQGp58UurZ03ubtWs50gF+IeAAAELncM7XXpPuvtt7u2+/ldq1cwuQAQ8IOACA0GHFxuPHSw0bem/3ySfSI49wpAM8IuAAAEJL9uxugLn6au/tRo2Shg4NVq8QZgg4AIDQYxsA2gZ/5cp5b/fUU+x2jFQRcAAAoal4cenLL93zq7zp0sU9+gEIRsAZPHiw6tSpo1y5cqlAgQI+258+fVpPPPGErrzySuXOnVslS5ZUhw4dtGvXrhTtypYtq5iYmBTXiy++GKi3AQDISJde6o7k5Mrluc2ZM1LLltKqVcHsGaI14Jw6dUqtWrVSt27d/Gp//PhxrVy5Us8884xz+8knn2jTpk267bbb/tV20KBB2r17d9LV09eyQgBA+KpZU5o6Vcqc2XObI0fcPXJ+/z2YPUMIyxKoFx44cKBzO27cOL/a58+fX3POGmJ84403VLNmTW3btk1lypRJuj9v3rwqbkOXAIDoYOHlnXekzp09t9mzR2raVFq0SCpUKJi9QwgK6RqcQ4cOOVNQZ09x2ZTUBRdcoGrVqmnEiBE6Y8OTXsTGxurw4cMpLgBAmOnUyYbwvbfZuNE9+iE2Nli9QogK2YBz8uRJpyanbdu2ypcvX9L9Dz/8sCZOnKj58+frwQcf1JAhQ9S3b1+vrzV06FBnhCjxKl26dBDeAQAg3T39tNS1q/c2Cxe6YSg+Pli9QgiKSUjwf5ekfv36adiwYV7bbNiwQRUrVkz62aaoevXqpYMHD/rdKSs4btmypXbs2KEFCxakCDhne++995ygc/ToUWW3vRM8jODYlchGcCzk2AiRt9cGAIQgG7W34xo+/9x7u3792Ccnwtj3tw1U+PP9naYanN69e6uTpWIvypcvr/Nh4aZ169b6/fffNW/ePJ9voFatWs4U1datW1WhQoVU21jw8RR+AABhJksWadIkqUEDaflyz+1shW3ZstKDDwazdwgRaQo4RYoUca5ASQw3v/zyizMFZXU2vqxatUqZMmVS0aJFA9YvAECIyZPHXT5+7bXSli2e2z30kFSqlNS8eTB7h0iuwbGVTxY+7DYuLs75tV02lZTIprKmTZuWFG7uuusuLV++XBMmTHCes2fPHueyJedm8eLFeu2117R69Wr99ttvTrtHH31U7du3V8GCBQP1VgAAocj+YfvFF95XTFkdjh3e+eOPwewZwq0GJy1sKmu8HZh2FhuZqV+/vvubx8Ro7NixTlubYirnYUvuxOfY/jgPPfSQNm7c6NTUWPt7771Xjz32WJqmoNIyhwcACHHffecezult5VTJktKSJe5oDsJWWr6/AxZwQhkBBwAizOTJ7kiNN1ddJX37rcTf+1Hx/R2yy8QBAPBb69bSiBHe2/z0k9vu9Olg9QoZiIADAIgMvXu7RcXe2OGdPXpI0Td5EXUIOACAyBATI73+utSsmfd2Y8ZIL70UrF4hgxBwAACRt0dO1are2z3xhPTJJ8HqFTIAAQcAEHl75MyaJV14oec2NkXVvr20bFkwe4YgIuAAACKPhRvbCNDCjicnTki33WYbtwWzZwgSAg4AIDJVqSJNmSJlzuy5zZ490i232PrjYPYMQUDAAQBErqZNpZEjvbdZs0Zq08Y9xBMRg4ADAIhs3bpJjz7qvY0d+dCnT7B6hCAg4AAAIp9tAmj1Nt7YEvPRo4PVIwQYAQcAEPmsDmfCBKlaNe/tevaU5swJVq8QQAQcAEB0sBVVM2d6Xz4eFye1aiVt2BDMniEACDgAgOhh4cZCTq5cntscOuSurPrjj2D2DOmMgAMAiC42TWXTVXa0gye//Sa1bCmdOhXMniEdEXAAANGnRQvpxRe9t1m4UOrenYM5wxQBBwAQnR5/XOrc2Xubd95xV1ch7BBwAADRyaao3npLuv567+1693b3yUFYIeAAAKJXtmzS//2fVL685zbx8e5Ox+vXB7NnOE8EHABAdCtc2F1ZlS+f5zZ2VtWtt0p//hnMnuE8EHAAAKhcWZo4UcqUyfvKKtsj5/TpYPYM54iAAwCAuflm6eWXvbeZP1/q1StYPcJ5IOAAAJDokUek++/33ubNN93iZIQ0Ag4AAMlXVo0aJd1wg+8zqxYsCFavcA4IOAAAnL2yaupUqVw5z23OnJHuusuty0FIIuAAAJDayqoZM9wDOj2xFVW33y4dPRrMnsFPBBwAAFJzxRXShx96P7Nq7VqpQwd3rxyEFAIOAACe2AjNCy94bzNtmvT888HqEfxEwAEAwJv+/aW2bb23ee45N+ggZBBwAADwxqao3n1Xql7de7t775XWrAlWr+ADAQcAAF9y5pSmT5eKFfPc5tgxd0qL4xwiO+AMHjxYderUUa5cuVSgQAG/ntOpUyfFxMSkuJo2bZqizYEDB9SuXTvly5fPed0uXbroKBXsAIBAK1XKPZgza1bPbbZscaezbBk5IjPgnDp1Sq1atVK3bt3S9DwLNLt37066Pv744xSPW7hZt26d5syZo1mzZmnhwoV64IEH0rn3AACkom5ddyNAb+bMcet2kKGyBOqFBw4c6NyOGzcuTc/Lnj27ihcvnupjGzZs0OzZs7Vs2TLVqFHDuW/kyJFq1qyZXnrpJZUsWTIdeg4AgBddu0qrV3sPOi+9JFWrJt1zTzB7hlCuwVmwYIGKFi2qChUqOKM/fyaby1y8eLEzLZUYbkzDhg2VKVMmLVmyxONrxsbG6vDhwykuAADO2auv+j7OoUsX6ccfg9UjhHLAsemp999/X3PnztWwYcP0zTff6Oabb1ZcXJzz+J49e5zwk1yWLFlUqFAh5zFPhg4dqvz58yddpUuXDvh7AQBEMKvDmTJFKlPGc5uTJ6UWLaT9+4PZM5xLwOnXr9+/ioDPvjZu3Khz1aZNG91222268sor1aJFC6fGxqajbFTnfPTv31+HDh1KurZv335erwcAgIoUcfe+yZHDc5tt26S776boONRrcHr37u2sdPKmfPny59unFK9VuHBhbd68WTfddJNTm7Nv374Ubc6cOeOsrPJUt5NY12MXAADp6uqrpXfekdq399xm/nzpiSekl18OZs+iXpoCTpEiRZwrWHbs2OHU4JQoUcL5uXbt2jp48KBWrFih6n9vuDRv3jzFx8erVq1aQesXAABJ2rVza228BZhXXnE3CqToOPxrcLZt26ZVq1Y5t1ZDY7+2K/meNRUrVtS0v7e2tvsff/xx/fDDD9q6datTh3P77bfrkksuUZMmTZw2lSpVcup0unbtqqVLl2rRokXq0aOHM7XFCioAQIZ58UVb9eK9zf33u6uvEN4BZ8CAAapWrZqeffZZJ7zYr+1avnx5UptNmzY5NTEmc+bM+umnn5wanMsuu8zZwM9Gab799tsU00sTJkxwgpFNWdny8Hr16mnMmDGBehsAAPiWJYs0caJUrpznNidOSHfcwU7HQRKTkJCQoChjy8RtNZWFK9sRGQCAdGEjNLVru2HGk0aNpC++sH/ZB7NnUff9HVLLxAEACGtVqrhFx752On7mmWD1KGoRcAAASE9WSPzoo97bDB3qLjFHwBBwAABIb8OHS/Xre2/TsaN0HnvHwTsCDgAAgSg6njxZ8rZz/pEj0p13urdIdwQcAAACwfaN++QT223Wc5sNG6T77pOib71PwBFwAAAIFDsc2tup42bqVHY5DgACDgAAgWSnij/wgPc2dpTDeZ67iJQIOAAABNp//yvVrOn58fh491DOnTuD2auIRsABACDQrA7HpqK8nedoh0m3bi2dOhXMnkUsAg4AAMFgK6omTZIyefnq/f576fHHg9mriEXAAQAgWBo0cA/m9DWd9fHHwepRxCLgAAAQTH36uPvf+Dp5fN26YPUoIhFwAAAIppgYaexY6bLLPLc5flxq2ZJNAM8DAQcAgGCzk7BtE8BcuTy32bTJHclhE8BzQsABACAjXH6575PH7biHN94IVo8iCgEHAICM0rat1LOn9za9e0s//BCsHkUMAg4AABnppZeka6/1/Pjp01KrVtL+/cHsVdgj4AAAkJGyZXOnogoX9txmxw6pXTspLi6YPQtrBBwAAEJhE8CPPnJXWHkyZ440eHAwexXWCDgAAISCRo2k557z3sYenzs3WD0KawQcAABCxdNPS02aeH7clozfc4+0a1cwexWWCDgAAIQKO6fqww+lMmW8H8rZpo105kwwexZ2CDgAAIQSKza2ouOsWT23+fZbd7QHHhFwAAAINbVqSSNGeG8zbJg0a1awehR2CDgAAISihx92z6PypkMH6fffg9WjsELAAQAgFNmS8XfflS65xHObv/6S7r5bOnUqmD0LCwQcAABCVf780pQpUvbsntssWSL17x/MXoUFAg4AAKGsalXfB26+8or06afB6lFYIOAAABDqunSR2rf33qZTJ2nr1mD1KOQRcAAACId6nNGjpYoVPbc5eFBq3Zp6nL8RcAAACAd58rj1ODlzem6zbJnUr18wexV9AWfw4MGqU6eOcuXKpQIFCvj1nJiYmFSvEcn2Aihbtuy/Hn/xxRcD9TYAAAgdV1whjRrlvc2rr0ozZijaBSzgnDp1Sq1atVK3bt38fs7u3btTXO+9954TYFqetQ/AoEGDUrTr2bNnAN4BAAAhqHNnqWNH3/U427YpmmUJ1AsPHDjQuR03bpzfzylevHiKnz/99FM1aNBA5cuXT3F/3rx5/9UWAICoYaM4Nh21fr3n/XHatpUWLPB+5EMEC9kanL179+qzzz5TF6scP4tNSV1wwQWqVq2aM311xseBY7GxsTp8+HCKCwCAsJU7t3telbd6nO+/l555RtEqZAPO+PHjnZGaO++8M8X9Dz/8sCZOnKj58+frwQcf1JAhQ9S3b1+vrzV06FDlz58/6SpdunSAew8AQIBdfrnv/XGGDZO++ELRKCYhISHB38b9+vXTMPuwvNiwYYMqJlvGZlNUvXr10kFbvpYG9hqNGjXSyJEjvbazOh0LOkePHlV2Dzs92giOXYlsBMdCzqFDh5QvX7409QsAgJBhX+H33itNmOD9dPLVq6WSJRXu7PvbBir8+f5OUw1O79691ckKl7w4u17mXHz77bfatGmTJk2a5LNtrVq1nCmqrVu3qkKFCqm2seDjKfwAABD2++NYPc7PP6fe5o8/3BD01VdS5syKFmkKOEWKFHGuQHv33XdVvXp1ValSxWfbVatWKVOmTCpatGjA+wUAQMjJm1eyAYFrr7Upi9TbzJtn9RrS008rWgSsBmfbtm1O+LDbuLg459d22VRS8mmoadOm/Wv4acqUKbr//vv/9ZqLFy/Wa6+9ptWrV+u3337ThAkT9Oijj6p9+/YqWLBgoN4KAAChf16V7X/jzbPP2hSJokXAlokPGDDAKRROZCuejBUH169f3/m1TUPZPFpyVkBsZUFtbXnbWWyayR5/7rnnnJqacuXKOQHnscceC9TbAAAgPPznP+5IzdSpqT8eHy/dc49NfUgXXKBIl6Yi40iRliIlAADChi3osQGFrV4O3bztNmn6dLd+J4K/v0N2mTgAAEgjOxrp44+lLF4maOwYB1/LyyMAAQcAgEhixcaDB3tv06ePu3Q8ghFwAACINH36SE2aeH781Cnp7rulY8cUqQJWZBwJbPXX6dOnM7obYSdr1qzKHEV7LQBAyMmUSXr/fcm2W9mzJ/U2mzbZ8QC2N4siEQEnFVZ3vWfPnjTvvox/FChQwDkQ1U6DBwBkgKJFpQ8/lBo1cnc8Ts1777mPt2mjSEPASUViuLHNA3PlysWXdBrD4fHjx7Vv3z7n5xIlSmR0lwAget10k52z5G7y58mDD9qxAFK5cookBJxUpqUSw42dWI60y/n36bYWcuxzZLoKADLQwIG2CZ30ww+pP374sGR7z9kmgFmzKlJQZHyWxJobG7nBuUv8/KhhAoAMljWr9NFHkrd9Y5YskZ57TpGEgOMB01Lnh88PAEKITT+NGeO9jU1jLVigSEHAAQAgGtx9t9Sli+fHrRC5fXvpzz8VCQg4OCdly5Z1Dj4FAISR11+3k649P75zp2SHXUfAKU4EHAAAokXu3G49TrZsntvYOVW+prPCAAEnip2ynSwBANGlWjXpxRe9t+nVS1q/XuGMgONL3rxS9uwZe1kf/FC/fn316NHDuey01cKFC+uZZ55x9qZJnFZ6/vnn1aFDB+cU1gceeMC5/7vvvtN1113nLO8uXbq0Hn74YR1Ltn23Lfe+9dZbncfLlSunCRMmBOjDBgAExSOPSE2ben785Enpnnuk2FiFKwKOLzbKEQqXn8aPH68sWbJo6dKlev311/XKK6/onXfeSXr8pZdeUpUqVfTjjz864efXX39V06ZN1bJlS/3000+aNGmSE3gsJCXq1KmTtm/frvnz52vq1Kl68803kzbyAwCE6VEO48a5ux17Yodx9u+vcBWTkPjP+yhy+PBhZ4Tj0KFDzkhGcidPntSWLVuckYocOXK4IygZPZVjc6V+pGgbwbHgsW7duqRl2v369dOMGTO0fv16ZwSnWrVqmjZtWtJz7r//fmcjvrfffjvpPgs4N9xwgzOKs23bNlWoUMEJTNdcc43z+MaNG1WpUiW9+uqr6mXDmKn41+cIAAg9s2dLN9/svc2XX0qNGyvUv7/PxghOhLn22mtT7EFTu3Zt/fLLL84OzaZGjRop2q9evVrjxo1Tnjx5kq4mTZooPj7eCSgbNmxwRoSqV6+e9JyKFSs6Z00BAMJc06bSo496b9Oxo7R/v8INASfK5LYK+mSOHj2qBx98UKtWrUq6LPRYKLr44oszrJ8AgCAZMkS66irPj9tp5LZ/TphN+BBwIswS2247mR9++EGXXnqpx/Ogrr76amf66pJLLvnXlS1bNme05syZM1qxYkXSczZt2sRJ6wAQKXLkkD7+2L31ZOZM6a23FE4IOP7Uv4TC5SermXnsscecEPLxxx9r5MiResSq5T144okn9P333ztFxTZ6YyM3n376aVKRsdXfWBGyjfJYeLKgY3U7iQdqAgAiQOXK0ssve2/z2GPShg0KF5wm7suRIwontgT8xIkTqlmzpjNqY+EmcTl4aq666ip98803euqpp5yl4lZzblNTd9uW3n8bO3asE2qs8LhYsWJ64YUXnBVYAIAI0q2bW3RsozWelo7bUQ6LF6fpH94ZhVVUvlZRhRFbRVW1atWQOEIhnD9HAIha+/e79ThWd+PJE0/43igwQFhFBQAA0q5IEdtQzXub4cPD4tRxAg4AAPiH7XnjpXbTWU3VoYMU4otNqMGJIAvCIFEDAMLAiy9Kc+dKa9em/vj27dJDD7kHd4YoRnAAAEBKVjtp5w56Kya2peUhfDYhAQcAAPybFRv7Kibu3t32J1EoIuAAAIDUWS1Ow4YeHpR06JB7lEN8vEINAQcAAHg+ddxWVRUq5K0AVHrlFYUaAg4AAPCsZElpzBgvDSQ9+aSd3qyoCDhbt25Vly5dnI3ebFt/2x332Wef1alTp3xuENe9e3ddcMEFzsnWLVu21N69e/91HEHz5s2VK1cuFS1aVI8//rhzXhIAAAiAli3dqShPTp+W2rVzdzuO9ICzceNGxcfH6+2339a6dev06quv6q233tKTlvK8ePTRRzVz5kxNmTLFOUJg165duvPOO5Mej4uLc8KNBSU7Q2n8+PEaN26cBgwYEKi3AgAA/vtfqWxZz4+vW+eO5ISKhCAaPnx4Qrly5Tw+fvDgwYSsWbMmTJkyJem+DRs22FESCYsXL3Z+/vzzzxMyZcqUsGfPnqQ2o0ePTsiXL19CbGysX/04dOiQ85p2e7YTJ04krF+/3rkNNzfccEPCI488khAKwvlzBAB4sHBhQkKmTLbVn+dr7tyEQPH2/X22oNbg2NkRhbwUKtlJ1adPn1bDZBXbFStWVJkyZbTYDveSnfG1WFdeeaVz6GOiJk2aOOdT2EhRamJjY53Hk1/RyI4dYyoPAHDOrrvOPYvKm06dQmKX46DtZLx582aNHDlSL730ksc2e/bsUbZs2VSgQIEU91uYsccS2yQPN4mPJz6WmqFDh2rgwIHn1O+8Q/PqVJz3uqFAy5Y5m470936qeadOnZwpPbtef/31pFPAO3furM8//1xPP/201qxZo6+++sqZ0jt48KCmT5+e9PxevXpp1apVSbsh2/TisGHDNGbMGOdzveyyy5wTxO+6664Av1sAQEh77jnpyy+llSs973Lcs6f0wQfKSGkewenXr59iYmK8XlZ/k9zOnTvVtGlTtWrVSl27dlWw9e/f3xk9Sry224fvJws3oXD5YqGmdu3azue7e/du5ypdunTSf7MXX3xRGzZs0FW2cZMfLBS+//77Tt2UjYxZbVT79u2dAAUAiGLZskkffujuduyJPT51qsJqBKd3797OaIE35cuXT/q1FQk3aNBAderUcUYDvClevLhTPGyjC8lHcWwVlT2W2Gbp0qUpnpe4yiqxzdmyZ8/uXJHMjo+30S9bWZb4OSQGzUGDBqlRo0Z+v5ZN6Q0ZMkRff/21E5oS/5t+9913TtH4DTfcEKB3AQAIC5UqScOGeT+U88EHpbp1pRIlFBYBp0iRIs7lDxu5sXBTvXp1Z7okk20Y5IW1y5o1q+bOnessDzebNm1yloUnftHa7eDBg7Vv3z5nibiZM2eO8uXLp8qVK6f17USFGjVqpHk68fjx4/8KRRY+q1Wrls69AwCEpR49pBkz3EM5U3PggNSli/TZZ1JMTOTU4Fi4qV+/vi666CKn7mb//v1JjyWOMFibm266yZkKqVmzpjMKYXvnPPbYY04xsoWWnj17OqHm2muvdZ7TuHFjJ8jce++9Gj58uFMfYvUltndOpI/SnKvcuXOn+NmCphUcJ2fF3YmOHj3q3H722We68MILU7TjMwYAOGzQYtw46corPRcVf/GF9Pbb0n/+o4gJODaqYiMBdpUqVSrFY4lfrvalaiM0NlqQyPbLsS9gG8GxqRJbIfXmm28mPZ45c2bNmjVL3bp1c4KPfXl37NjRmYaJdjZFZfsE+WIjcGvXrk1xnxUY2+iZsQBpQcZGzpiOAgB4ZN/vo0a5m/x50ru3dNNN0qWXKiICjtXp+KrVKVu27L9GEnLkyKFRo0Y5lyc2KmQrg4K1gimj+dsH+zyXLFni7CJtu0DbSqjU3HjjjRoxYoQzcmYh8cMPP3QCT+L0U968edWnTx+nsNheo169ek5x9qJFi5xRNQuUAAA42raVPv1UmjxZqbJBjA4dpG+/lbJkibxl4uHK1/LsUGKhxMKHjcCcOHHCqXtKjY2K2ZLvvn37Okdj3HffferQoYOzjDzR888/74z02Gqq3377zSn6vvrqq33uRA0AiDIxMdLo0W6A2b079Ta//y5t2RLUUZwY2+1PUcY2+rN6HxuVsBGJ5OwLf8uWLc4ZWjaahHPD5wgAUebLL6WmTf99f+vWbgDydiJ5Onx/n43TxAEAwPlr0kR66KF/frbtXiZMkCZOTJdwk1ZMUQEAgPQxfLj09deSbTRrK6zOWmQUTAQcAACQPmxbEjvyx45Q8rH3XaARcAAAQPrJoJ2Lz0YNDgAAiDgEHA887SED//D5AQAyElNUqewGbDsp2yGhtg+M/WwnpMM/tuuAnVllR3PY52ifHwAAwUbAOYt9KdveLbt373ZCDs6NnWpepkwZnwesAgAQCAScVNiog305nzlzxq+znZCSnReWJUsWRr4AABmGgOOBfTnb4ZOJB1ACAIDwwfwBAACIOAQcAAAQcQg4AAAg4kRlDU7iAep2KikAAAgPid/bid/j3kRlwDly5IhzW9oOAwMAAGH3PZ4/f36vbWIS/IlBEbjLru1xkzdv3nRfymzp0oLT9u3blS9fvnR9bfyDzzk4+JyDg885OPicw/+ztshi4aZkyZI+91mLyhEc+1BKBfgId/sPyv9AgcfnHBx8zsHB5xwcfM7h/Vn7GrlJRJExAACIOAQcAAAQcQg46Sx79ux69tlnnVsEDp9zcPA5Bwefc3DwOUfXZx2VRcYAACCyMYIDAAAiDgEHAABEHAIOAACIOAQcAAAQcQg46WjUqFEqW7ascuTIoVq1amnp0qUZ3aWIs3DhQt16663OLpa2C/X06dMzuksRaejQobrmmmuc3b6LFi2qFi1aaNOmTRndrYgzevRoXXXVVUmbodWuXVtffPFFRncr4r344ovO3x+9evXK6K5ElOeee875XJNfFStWzLD+EHDSyaRJk/TYY485y+JWrlypKlWqqEmTJtq3b19Gdy2iHDt2zPlsLUwicL755ht1795dP/zwg+bMmaPTp0+rcePGzueP9GM7qtuX7YoVK7R8+XLdeOONuv3227Vu3bqM7lrEWrZsmd5++20nWCL9XX755dq9e3fS9d133ymjsEw8ndiIjf2L94033kg678rO4ejZs6f69euX0d2LSPavg2nTpjmjCwis/fv3OyM5Fnyuv/76jO5ORCtUqJBGjBihLl26ZHRXIs7Ro0d19dVX680339QLL7ygqlWr6rXXXsvobkXUCM706dO1atUqhQJGcNLBqVOnnH+BNWzYMMV5V/bz4sWLM7RvQHo4dOhQ0pcvAiMuLk4TJ050Rslsqgrpz0YlmzdvnuLvaqSvX375xSkhKF++vNq1a6dt27Ypo0TlYZvp7Y8//nD+cipWrFiK++3njRs3Zli/gPRgo5FWq1C3bl1dccUVGd2diLNmzRon0Jw8eVJ58uRxRiUrV66c0d2KOBYerXzApqgQuJmMcePGqUKFCs701MCBA3Xddddp7dq1Tj1fsBFwAPj8V6/9BZWRc+mRzL4MbEjfRsmmTp2qjh07OlOBhJz0s337dj3yyCNOPZktAkFg3HzzzUm/thonCzwXXXSRJk+enCFTrgScdFC4cGFlzpxZe/fuTXG//Vy8ePEM6xdwvnr06KFZs2Y5q9esIBbpL1u2bLrkkkucX1evXt0ZYXj99dedQlikDyshsAUfVn+TyEbd7c+11U3GxsY6f4cjfRUoUECXXXaZNm/erIxADU46/QVlfzHNnTs3xbC+/cxcOsKRrT2wcGPTJfPmzVO5cuUyuktRw/7usC9cpJ+bbrrJmQq0kbLEq0aNGk6NiP2acBO4ou5ff/1VJUqUUEZgBCed2BJxG1q2/2lq1qzpVOZbsWDnzp0zumsR9z9M8n8NbNmyxfkLyopfy5Qpk6F9i7RpqY8++kiffvqpM3e+Z88e5/78+fMrZ86cGd29iNG/f39nWN/+7B45csT5zBcsWKAvv/wyo7sWUezP8Nn1Y7lz59YFF1xAXVk66tOnj7NPmU1L7dq1y9k2xcJj27ZtlREIOOnk7rvvdpbSDhgwwPkysOWHs2fP/lfhMc6P7RXSoEGDFMHSWLi04jak3wZ0pn79+inuHzt2rDp16pRBvYo8Nm3SoUMHpyDTwqPVLVi4adSoUUZ3DUizHTt2OGHmzz//VJEiRVSvXj1nLy37dUZgHxwAABBxqMEBAAARh4ADAAAiDgEHAABEHAIOAACIOAQcAAAQcQg4AAAg4hBwAABAxCHgAACAiEPAAQAAEYeAAwAAIg4BBwAARBwCDgAAUKT5fy2xo+JWPByOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.scatter(x, t)\n", "plt.plot(x, pred_y, linewidth=5, color=\"red\", label=\"pred\")\n", @@ -285,7 +485,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.13.1" } }, "nbformat": 4,