forked from lorenmt/minimal-isaac-gym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
35 lines (27 loc) · 979 Bytes
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from dqn import DQN
from ppo import PPO
from ppo_discrete import PPO_Discrete
import torch
import random
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default=None, type=str)
parser.add_argument('--port', default=None, type=int)
parser.add_argument('--sim_device', type=str, default="cuda:0", help='Physics Device in PyTorch-like syntax')
parser.add_argument('--compute_device_id', default=0, type=int)
parser.add_argument('--graphics_device_id', type=int, default=0, help='Graphics Device ID')
parser.add_argument('--num_envs', default=512, type=int)
parser.add_argument('--headless', action='store_true')
parser.add_argument('--method', default='ppo', type=str)
args = parser.parse_args()
args.headless = True
torch.manual_seed(0)
random.seed(0)
if args.method == 'ppo':
policy = PPO(args)
elif args.method == 'ppo_d':
policy = PPO_Discrete(args)
elif args.method == 'dqn':
policy = DQN(args)
while True:
policy.run()