-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexploration.py
94 lines (64 loc) · 2.87 KB
/
exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import pydicom as dicom
import scipy.ndimage
from os import listdir
from os.path import isfile, join
def load_scan(path):
slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)]
slices.sort(key = lambda x: float(x.ImagePositionPatient[2]))
try:
slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2])
except:
slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation)
for s in slices:
s.SliceThickness = slice_thickness
return slices
def get_pixels_hu(slices):
image = np.stack([s.pixel_array for s in slices])
# Convert to int16 (from sometimes int16),
# should be possible as values should always be low enough (<32k)
image = image.astype(np.int16)
# Set outside-of-scan pixels to 0
# The intercept is usually -1024, so air is approximately 0
image[image == -2000] = 0
# Convert to Hounsfield units (HU)
for slice_number in range(len(slices)):
intercept = slices[slice_number].RescaleIntercept
slope = slices[slice_number].RescaleSlope
if slope != 1:
image[slice_number] = slope * image[slice_number].astype(np.float64)
image[slice_number] = image[slice_number].astype(np.int16)
image[slice_number] += np.int16(intercept)
return np.array(image, dtype=np.int16)
def resample(image, scan, new_spacing=[1,1,1]):
# Determine current pixel spacing
spacing = np.array([scan[0].SliceThickness] + list(scan[0].PixelSpacing), dtype=np.float32)
resize_factor = spacing / new_spacing
new_real_shape = image.shape * resize_factor
new_shape = np.round(new_real_shape)
real_resize_factor = new_shape / image.shape
new_spacing = spacing / real_resize_factor
image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest')
return image, new_spacing
def viewCoronalSlice(img, index):
plt.imshow(img[index, :, :], cmap = 'gray')
plt.show()
root = r"D:\Documents\School\2020-21\CT\LIDC-IDRI"
#imagine doing it the correct way lmao can't relate
def crawl(root):
dirlist = os.listdir(root)
for one in dirlist:
dirlisttwo = os.listdir(os.path.join(root, one))
for two in dirlisttwo:
dirlistthree = os.listdir(os.path.join(root, one, two))
for three in dirlistthree:
dirlistfour = os.listdir(os.path.join(root, one, two, three))
if (len(dirlistfour) > 170):
patient = load_scan(os.path.join(root, one, two, three))
hu = get_pixels_hu(patient)
#resampled, spacing = resample(hu, patient)
viewCoronalSlice(hu, 50)
crawl(root)