@@ -8,33 +8,96 @@ description: |
8
8
Turing.jl is a probabilistic programming language and Bayesian modelling framework for the Julia programming language.
9
9
---
10
10
11
- <div class =" d-flex flex-column align-items-center gap-0 " style =" padding :7rem 0 ;" >
12
- <image src =" assets/images/turing-logo.svg " width =" 150px " alt =" Three normal probability distributions " >
13
- <span style =" font-size :4rem ;font-weight :700 ;" >Turing.jl</span >
14
- <span style =" font-size :2rem ;padding-bottom :1.25rem ;" >Bayesian inference with probabilistic programming</span >
15
- <div class =" d-flex flex-row gap-2 " >
16
- [ Get Started] ( https://turinglang.org/docs/tutorials/docs-00-getting-started/ ) {.button--fill .btn}
17
-
18
- <!-- The empty line above makes quarto accept the div class -->
19
- [ API reference] ( /library/ ) {.button .btn}
20
- </div >
21
- </div >
22
- <div class =" d-flex flex-row flex-wrap justify-content-center gap-3 pb-5 " >
23
- <div class =" card " >
24
- <div class =" card-title " >Intuitive</div >
25
- Turing models are easy to write and communicate — syntax is close to mathematical notations.
11
+ ``` {=html}
12
+ <div class="content-panel">
13
+ <div class="d-flex flex-column align-items-center gap-0" style="padding:6rem 0;">
14
+ <image src="assets/images/turing-logo.svg" width="150px" alt="Three normal probability distributions">
15
+ <span style="font-size:4rem;font-weight:700;">
16
+ Turing.jl
17
+ </span>
18
+ <span class="display-6 d-block text-center pb-4 display-md-5 display-lg-4">
19
+ Bayesian inference with probabilistic programming
20
+ </span>
21
+ <div class="d-flex flex-row flex-wrap justify-content-center gap-2">
22
+ <a href="https://turinglang.org/docs/tutorials/docs-00-getting-started/" class="button--fill btn">
23
+ Tutorials
24
+ </a>
25
+ <a href="/library" class="button btn">
26
+ Ecosystem
27
+ </a>
28
+ <a href="https://github.com/TuringLang" class="button btn">
29
+ View on GitHub
30
+ </a>
31
+ </div>
26
32
</div>
27
-
28
- <div class =" card " >
29
- <div class =" card-title " >General-purpose</div >
30
- Turing supports models with discrete parameters and stochastic control flow.
33
+ <div class="d-flex flex-row flex-wrap justify-content-center gap-3" style="padding-bottom:6rem;">
34
+ <div class="card">
35
+ <div class="card-title">
36
+ Intuitive
37
+ </div>
38
+ Turing models are easy to write and communicate — syntax is close to mathematical notations.
39
+ </div>
40
+ <div class="card">
41
+ <div class="card-title">
42
+ General-purpose
43
+ </div>
44
+ Turing supports models with discrete parameters and stochastic control flow.
45
+ </div>
46
+ <div class="card">
47
+ <div class="card-title">
48
+ Modular & composable
49
+ </div>
50
+ Turing is modular, written entirely in Julia, and is interoperable with the powerful Julia ecosystem.
51
+ </div>
31
52
</div>
32
-
33
- <div class =" card " >
34
- <div class =" card-title " >Modular & composable</div >
35
- Turing is modular, written entirely in Julia, and is interoperable with the powerful Julia ecosystem.
53
+ </div>
54
+ ```
55
+ <div class =" content-panel " >
56
+ <div class =" d-flex flex-row flex-wrap justify-content-center gap-3 " >
57
+ <div style =" min-width :420px ; max-width :420px ;text-align :right ;padding :0.5rem ;" >
58
+ <div style =" font-size :x-large ;font-weight :700 ;padding-bottom :0.5rem ;" >
59
+ Hello, World in Turing
36
60
</div >
61
+ Some text about how easy it is to [ get going] ( https://turinglang.org/docs/tutorials/00-introduction/ ) .
62
+ </div >
63
+ <div style =" min-width :500px ;" >
64
+ ``` julia
65
+ @model function coinflip (; N:: Int )
66
+ # Prior belief about the probability of heads
67
+ p ~ Beta (1 , 1 )
68
+
69
+ # Heads or tails of a coin are drawn from `N`
70
+ # Bernoulli distributions with success rate `p`
71
+ y ~ filldist (Bernoulli (p), N)
72
+
73
+ return y
74
+ end ;
75
+ ```
76
+ </div >
37
77
</div >
78
+ <div class =" d-flex flex-row flex-wrap justify-content-center gap-3 " >
79
+ <div style =" min-width :500px ;" >
80
+ ``` julia
81
+ @model function putting_model (d, n; jitter= 1e-4 )
82
+ v ~ Gamma (2 , 1 )
83
+ l ~ Gamma (4 , 1 )
84
+ f = GP (v * with_lengthscale (SEKernel (), l))
85
+ f_latent ~ f (d, jitter)
86
+ binomials = Binomial .(n, logistic .(f_latent))
87
+ y ~ product_distribution (binomials)
88
+ return (fx= f (d, jitter), f_latent= f_latent, y= y)
89
+ end
90
+ ```
91
+ </div >
92
+ <div style =" min-width :420px ; max-width :420px ;padding :0.5rem ;" >
93
+ <div style =" font-size :x-large ;font-weight :700 ;padding-bottom :0.5rem ;" >
94
+ Goodbye, World in Turing
95
+ </div >
96
+ Some text about how easy it is to interface with external packages like AbstractGPs. Learn more about modelling [ Gaussian Processes] ( https://turinglang.org/docs/tutorials/15-gaussian-processes/ ) with Turing.jl.
97
+ </div >
98
+ </div >
99
+ </div >
100
+
38
101
39
102
<!--
40
103
::: {.hero-banner}
0 commit comments