-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnat.agda
348 lines (270 loc) · 13.5 KB
/
nat.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
-- {-# OPTIONS --allow-unsolved-metas #-}
open import basic
infixl 10 _+_
-- -----------------------------------------------------------------------------
-- -----------------------------------------------------------------------------
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
data _≤_ : ℕ → ℕ → Set where
base≤ : (x : ℕ) → x ≤ x
step≤ : (x : ℕ) → (y : ℕ) → x ≤ y → x ≤ (succ y)
_>_ : ℕ → ℕ → Set
x > y = ¬ (x ≤ y)
data _<_ : ℕ → ℕ → Set where
base< : (x : ℕ) → x < (succ x)
step< : (x : ℕ) → (y : ℕ) → x < y → x < (succ y)
_≥_ : ℕ → ℕ → Set
x ≥ y = ¬ (x < y)
x<x-to-⊥ : {x : ℕ} → x < x → ⊥
x+1<y-to-x<y : {x y : ℕ} → (succ x) < y → x < y
-- -----------------------------------------------------------------------------
-- -----------------------------------------------------------------------------
one = succ zero
two = succ (succ zero)
_+_ : ℕ → ℕ → ℕ
zero + b = b
succ a + b = succ (a + b)
pred : ℕ → ℕ
pred zero = zero
pred (succ a) = a
_-_ : ℕ → ℕ → ℕ
a - zero = a
a - (succ b) = (pred a) - b
x+0≡x : (x : ℕ) → x + zero ≡ x
x+0≡x zero = refl
x+0≡x (succ x) = cong succ (x+0≡x x)
symm+ : (x y : ℕ) → x + y ≡ y + x
symm+ x zero = x+0≡x x
symm+ zero (succ y) = cong succ (symm (x+0≡x y))
symm+ (succ x) (succ y) = begin
succ (x + succ y) ≡⟨ cong succ (symm+ x (succ y)) ⟩
succ (succ y + x) ≡⟨⟩
succ (succ (y + x)) ≡⟨ cong (λ v → succ (succ v)) (symm+ y x) ⟩
succ (succ (x + y)) ≡⟨⟩
succ (succ x + y) ≡⟨ cong succ (symm+ (succ x) y) ⟩
succ (y + succ x) ∎
-- succ (x + succ y)
-- ≡ succ (succ y + x) by simm+
-- ≡ succ (succ (y + x)) by def of sum
-- ≡ succ (succ (x + y)) by simm+
-- ≡ succ (succ x + y) by def of sum
-- ≡ succ (y + succ x) by symm+
lemma-+-succ : (a b : ℕ) → (a + succ b) ≡ succ (a + b)
lemma-+-succ zero b = refl
lemma-+-succ (succ a) b = cong succ (lemma-+-succ a b)
comm+ : (a b : ℕ) → (a + b) ≡ (b + a)
comm+ zero b = symm (x+0≡x b)
comm+ (succ a) b =
trans (cong succ (comm+ a b)) (symm (lemma-+-succ b a))
x-1+1≡x : (x : ℕ) → x ≢ zero → succ(pred x) ≡ x
x-1+1≡x zero p = absurd (p refl)
x-1+1≡x (succ x) p = refl
refl≤ : (x : ℕ) → x ≤ x
refl≤ x = base≤ x
refl≥ : (x : ℕ) → x ≥ x
refl≥ x p = x<x-to-⊥ p
trans< : {x y z : ℕ} → x < y → y < z → x < z
trans< (base< x) (base< (succ x)) = step< x (succ x) (base< x)
trans< (base< x) (step< (succ x) y p2) = step< x y (trans< (base< x) p2)
trans< (step< x y p1) (base< (succ y)) = step< x (succ y) (step< x y p1)
trans< (step< x y p1) (step< (succ y) z p2) = step< x z (trans< (step< x y p1) p2)
-- If the successors of two numbers are equals, then the two numbers are equal
-- x+1 ≡ y+1 ⇒ x ≡ y
x+1≡x+1-to-x≡y : {x y : ℕ} → succ x ≡ succ y → x ≡ y
x+1≡x+1-to-x≡y refl = refl
-- Zero is always less than a number of the form succ something.
0<x+1 : (x : ℕ) → zero < succ x
0<x+1 zero = base< zero
0<x+1 (succ x) = step< zero (succ x) (0<x+1 x)
x<y-to-x≤y : {x y : ℕ} → x < y → x ≤ y
x<y-to-x≤y (base< x) = step≤ x x (base≤ x)
x<y-to-x≤y (step< x y p) = step≤ x y (x<y-to-x≤y p)
0≤x+1 : (x : ℕ) → zero ≤ succ x
0≤x+1 x = x<y-to-x≤y (0<x+1 x)
-- x < y ⇒ (x+1) < (y+1)
x<y-to-x+1<y+1 : {x y : ℕ} → x < y → (succ x) < (succ y)
x<y-to-x+1<y+1 {x} {succ x} (base< x) = base< (succ x)
x<y-to-x+1<y+1 {x} {succ y} (step< x y p) = step< (succ x) (succ y) (x<y-to-x+1<y+1 p)
-- (x+1) < y ⇒ x < y
x+1<y-to-x<y {x} {succ (succ x)} (base< (succ x)) = step< x (succ x) (base< x)
x+1<y-to-x<y {x} {succ y} (step< (succ x) y p) = step< x y (x+1<y-to-x<y p)
-- (x+1) < (y+1) ⇒ x < y
x+1<y+1-to-x<y : {x y : ℕ} → (succ x) < (succ y) → x < y
x+1<y+1-to-x<y {x} {succ x} (base< (succ x)) = base< x
x+1<y+1-to-x<y {x} {y} (step< (succ x) y p) = x+1<y-to-x<y p
-- 0 ≤ x for any x
0≤x : (x : ℕ) → zero ≤ x
0≤x zero = base≤ zero
0≤x (succ x) = step≤ zero x (0≤x x)
-- x ≤ y ⇒ (x+1) ≤ (y+1)
x≤y-to-x+1≤y+1 : (x : ℕ) (y : ℕ) → x ≤ y → (succ x) ≤ (succ y)
x≤y-to-x+1≤y+1 x x (base≤ x) = base≤ (succ x)
x≤y-to-x+1≤y+1 x (succ y) (step≤ x y p) = step≤ (succ x) (succ y) (x≤y-to-x+1≤y+1 x y p)
-- (x+1) ≤ y ⇒ x ≤ y
x+1≤y-to-x≤y : (x : ℕ) (y : ℕ) → succ x ≤ y → x ≤ y
x+1≤y-to-x≤y x (succ x) (base≤ (succ x)) = step≤ x x (base≤ x)
x+1≤y-to-x≤y x (succ y) (step≤ (succ x) y p) = step≤ x y (x+1≤y-to-x≤y x y p)
-- (x+1) ≤ (y+1) ⇒ x ≤ y
x+1≤y+1-to-x≤y : {x y : ℕ} → (succ x) ≤ (succ y) → x ≤ y
x+1≤y+1-to-x≤y {x} {x} (base≤ (succ x)) = base≤ x
x+1≤y+1-to-x≤y {x} {y} (step≤ (succ x) y p) = x+1≤y-to-x≤y x y p
x≥y-to-x+1≥y+1 : {x y : ℕ} → x ≥ y → (succ x) ≥ (succ y)
x≥y-to-x+1≥y+1 {x} {y} p1 (base< .(succ _)) = p1 (base< x)
x≥y-to-x+1≥y+1 {x} {y} p1 (step< .(succ _) y p2) = p1 (x+1<y-to-x<y p2)
-- x > y ⇒ (x+1) > (y+1)
x>y-to-x+1>y+1 : (x : ℕ) (y : ℕ) → x > y → (succ x) > (succ y)
x>y-to-x+1>y+1 x y x>y = λ p → x>y (x+1≤y+1-to-x≤y p)
-- (x+1) > (y+1) ⇒ x > y
x+1>y+1-to-x>y : {x y : ℕ} → (succ x) > (succ y) → x > y
x+1>y+1-to-x>y {x} {y} p = λ p1 → p (x≤y-to-x+1≤y+1 x y p1)
-- (x+1) ≥ (y+1) ⇒ x ≥ y
x+1≥y+1-to-x≥y : {x y : ℕ} → (succ x) ≥ (succ y) → x ≥ y
x+1≥y+1-to-x≥y {x} {y} p = λ p1 → p (x<y-to-x+1<y+1 p1)
-- x-1 < y ⇒ x < y+1
x-1<y-to-x<y+1 : (x : ℕ) (y : ℕ) → pred x < y → x < succ y
x-1<y-to-x<y+1 zero .(succ zero) (base< .zero) = step< zero (succ zero) (base< zero)
x-1<y-to-x<y+1 (succ x) .(succ x) (base< .x) = base< (succ x)
x-1<y-to-x<y+1 x .(succ y) (step< .(pred x) y p) = step< x (succ y) (x-1<y-to-x<y+1 x y p)
-- x ≥ y+1 ⇒ x-1 ≥ y
x≥y+1-to-x-1≥y : (x : ℕ) (y : ℕ) → x ≥ succ (y) → pred x ≥ y
x≥y+1-to-x-1≥y x y p = λ p1 → p (x-1<y-to-x<y+1 x y p1)
-- x ≥ y+1 ⇒ x ≥ y
x≥y+1-to-x≥y : (x : ℕ) (y : ℕ) → x ≥ succ y → x ≥ y
x≥y+1-to-x≥y x y p = λ p1 → p (step< x y p1)
-- x+1 < y ⇒ x < y+1
x+1<y-to-x<y+1 : (x y : ℕ) → succ x < y → x < succ y
x+1<y-to-x<y+1 x .(succ (succ x)) (base< .(succ x)) = step< x (succ (succ x)) (step< x (succ x) (base< x))
x+1<y-to-x<y+1 x .(succ y) (step< .(succ x) y p) = step< x (succ y) (x+1<y-to-x<y+1 x y p)
-- x+1 < y+1 ⇒ x < y+1
x+1<y+1-to-x<y+1 : {x y : ℕ} → succ x < succ y → x < succ y
x+1<y+1-to-x<y+1 {x} {.(succ x)} (base< .(succ x)) = step< x (succ x) (base< x)
x+1<y+1-to-x<y+1 {x} {y} (step< (succ x) y p) = x+1<y-to-x<y+1 x y p
-- x ≥ y ⇒ x+1 ≥ y
x≥y-to-x+1≥y : (x : ℕ) → (y : ℕ) → x ≥ y → succ x ≥ y
x≥y-to-x+1≥y x y p = λ p1 → p (x+1<y-to-x<y p1)
x+1≤y-to-x<y : {x y : ℕ} → succ x ≤ y → x < y
x+1≤y-to-x<y {zero} {succ y} p1 = 0<x+1 y
x+1≤y-to-x<y {succ x} {succ y} p1 = x<y-to-x+1<y+1 (x+1≤y-to-x<y (x+1≤y+1-to-x≤y p1))
-- x+1 < x ⇒ ⊥
x+1<x-to-⊥ : {x : ℕ} → succ x < x → ⊥
x+1<x-to-⊥ {succ x} p = x+1<x-to-⊥ {x} (x+1<y+1-to-x<y p)
-- x < y ⇒ x ≢ y
x<y-to-x≢y : {x y : ℕ} → x < y → x ≢ y
x<y-to-x≢y (base< x) ()
x<y-to-x≢y (step< .(succ y) y p) refl = x+1<x-to-⊥ p
x>y-to-x≢y : {x y : ℕ} → x > y → x ≢ y
x>y-to-x≢y {x} p1 p2 rewrite symm p2 = p1 (base≤ x)
x≥y-to-x+1>y : {x y : ℕ} → x ≥ y → succ x > y
x≥y-to-x+1>y p1 p2 = p1 (x+1≤y-to-x<y p2)
-- x < 0 is absurd for any x
x<0-to-⊥ : {x : ℕ} → x < zero → ⊥
x<0-to-⊥ = λ ()
-- x < x is absurd
x<x-to-⊥ {zero} ()
x<x-to-⊥ {succ x} = λ p → x<x-to-⊥ {x} (x+1<y+1-to-x<y p)
-- x+1 > 0 for any x
x+1>0 : (x : ℕ) → succ x > zero
x+1>0 zero = λ ()
x+1>0 (succ x) = λ ()
-- x ≥ y+1 ⇒ x > zero
x≥y+1-to-x≥0 : (x : ℕ) → (y : ℕ) → x ≥ succ y → x > zero
x≥y+1-to-x≥0 zero y p = absurd (p (0<x+1 y))
x≥y+1-to-x≥0 (succ x) y p = x+1>0 x
x≡y-to-x≥y : (x y : ℕ) → x ≡ y → x ≥ y
x≡y-to-x≥y x x refl = λ p → x<x-to-⊥ p
x≡y-to-x-y≡0 : (x y : ℕ) → x ≡ y → (x - y) ≡ zero
x≡y-to-x-y≡0 zero zero refl = refl
x≡y-to-x-y≡0 (succ x) (succ x) refl = x≡y-to-x-y≡0 x x refl
x>y-to-x≥y : {x y : ℕ} → x > y → x ≥ y
x>y-to-x≥y {x} {.(succ x)} p1 (base< x) = p1 (step≤ x x (base≤ x))
x>y-to-x≥y {x} {.(succ y)} p1 (step< x y p2) = x>y-to-x≥y (λ z → p1 (step≤ x y z)) p2
x>y+1-to-x-1>y : {x y : ℕ} → x > succ y → pred x > y
x>y+1-to-x-1>y {zero} {y} p = λ z → p (step≤ zero y z)
x>y+1-to-x-1>y {succ x} {y} p = x+1>y+1-to-x>y p
x>y-to-x-y>0 : {x y : ℕ} → x > y → (x - y) > zero
x>y-to-x-y>0 {x} {zero} p = p
x>y-to-x-y>0 {x} {succ y} p = x>y-to-x-y>0 {pred x} {y} (x>y+1-to-x-1>y p)
-- Equality test for natural numbers.
-- Given two numbers it provides either a proof that those number are equals or
-- a proof that those numbers are not equal.
_≡?_ : (x : ℕ) → (y : ℕ) → ((x ≡ y) ⊎ (x ≢ y))
zero ≡? zero = left refl
zero ≡? (succ y) = right (λ ())
(succ x) ≡? zero = right (λ ())
(succ x) ≡? (succ y) with x ≡? y
... | left p = left (cong succ p)
... | right p = right λ p1 → p (x+1≡x+1-to-x≡y p1)
_<?_ : (x : ℕ) → (y : ℕ) → ((x < y) ⊎ (x ≥ y))
zero <? zero = right (λ ())
zero <? succ y = left (0<x+1 y)
succ x <? zero = right (λ ())
succ x <? succ y with x <? y
... | left p = left (x<y-to-x+1<y+1 p)
... | right p = right λ p1 → p (x+1<y+1-to-x<y p1)
_≤?_ : (x : ℕ) → (y : ℕ) → ((x ≤ y) ⊎ (x > y))
zero ≤? zero = left (base≤ zero)
zero ≤? succ y = left (0≤x (succ y))
succ x ≤? zero = right (λ ())
succ x ≤? succ y with x ≤? y
... | left x≤y = left (x≤y-to-x+1≤y+1 x y x≤y)
... | right x>y = right (x>y-to-x+1>y+1 x y x>y)
-- The comparison of an element with itself always results in a proof of equality.
-- Comparing x with x, you always get an element of x≡x.
x≡x : (x : ℕ) → ((x ≡? x) ≡ left refl)
x≡x zero = refl
x≡x (succ x) with x ≡? x
... | left refl = refl
... | right p = absurd (p refl)
max : ℕ → ℕ → ℕ
max a b with a ≤? b
... | left a≤b = b
... | right a>b = a
0≥x+1-to-⊥ : (x : ℕ) → zero ≥ succ x → ⊥
0≥x+1-to-⊥ zero p = p (base< zero)
0≥x+1-to-⊥ (succ x) p = 0≥x+1-to-⊥ x (λ z → p (step< zero (succ x) z))
x+1≢y+1-to-x≢y : {x y : ℕ} → succ x ≢ succ y → x ≢ y
x+1≢y+1-to-x≢y p = λ p1 → p (cong succ p1)
-- x ≥ y and x ≢ y ⇒ x > y
x≥y-and-x≢y-to-x>y : {x y : ℕ} → x ≥ y → x ≢ y → x > y
x≥y-and-x≢y-to-x>y {zero} {zero} p1 p2 = absurd (p2 refl)
x≥y-and-x≢y-to-x>y {zero} {succ y} p1 p2 = absurd (0≥x+1-to-⊥ y p1)
x≥y-and-x≢y-to-x>y {succ x} {zero} p1 p2 = λ ()
x≥y-and-x≢y-to-x>y {succ x} {succ y} p1 p2 = x>y-to-x+1>y+1 x y (x≥y-and-x≢y-to-x>y (x+1≥y+1-to-x≥y p1) (x+1≢y+1-to-x≢y p2))
-- a ≥ b ⇒ (a - b) + 1 ≡ (a+1) - b
-- This is not true for a < b.
-- (2 - 3) + 1 = 1 while (2 + 1) - 3 = 0 because (2-3) = 0
eq-minus-succ : (a : ℕ) (b : ℕ) → a ≥ b → succ (a - b) ≡ succ a - b
eq-minus-succ a zero p1 = refl
eq-minus-succ zero (succ b) p1 = absurd (p1 (0<x+1 b))
eq-minus-succ (succ a) (succ b) p1 = eq-minus-succ a b (x+1≥y+1-to-x≥y p1)
eq-minus-pred : {a : ℕ} {b : ℕ} → a ≥ b → pred (a - b) ≡ pred a - b
eq-minus-pred {a} {zero} p = refl
eq-minus-pred {zero} {succ b} p = eq-minus-pred (λ z → p (step< zero b z))
eq-minus-pred {succ a} {succ b} p = eq-minus-pred {a} {b} (x+1≥y+1-to-x≥y p)
x-y+y≡x : (x y : ℕ) → x ≥ y → (x - y) + y ≡ x
x-y+y≡x x zero p = x+0≡x x
x-y+y≡x zero (succ y) p = absurd (p (0<x+1 y))
x-y+y≡x (succ x) (succ y) p = begin
(succ x - succ y) + succ y ≡⟨⟩
(x - y) + succ y ≡⟨ comm+ (x - y) (succ y) ⟩
succ y + (x - y) ≡⟨⟩
succ (y + (x - y)) ≡⟨ cong succ (comm+ y (x - y)) ⟩
succ ((x - y) + y) ≡⟨ cong succ (x-y+y≡x x y (x+1≥y+1-to-x≥y p)) ⟩
succ x ∎
-- (succ x - succ y) + succ y
-- ≡ (x - y) + succ y by def of subtraction
-- ≡ succ y + (x - y) by comm+
-- ≡ succ (y + (x - y)) by def of sum
-- ≡ succ ((x - y) + y) by comm+
-- ≡ succ x by recursion
x<y-to-x+1≤y : {x y : ℕ} → x < y → succ x ≤ y
x<y-to-x+1≤y {x} {.(succ x)} (base< x) = base≤ (succ x)
x<y-to-x+1≤y {x} {.(succ y)} (step< x y p) = step≤ (succ x) y (x<y-to-x+1≤y p)
x>y-to-x-1≥y : {x y : ℕ} → x > y → pred x ≥ y
x>y-to-x-1≥y {zero} {succ y} p1 p2 = p1 (0≤x+1 y)
x>y-to-x-1≥y {succ x} {y} p1 p2 = p1 (x<y-to-x+1≤y p2)
x+y≥y : (x y : ℕ) → (x + y) ≥ y
x+y≥y zero y = refl≥ y
x+y≥y (succ x) y = x≥y-to-x+1≥y (x + y) y (x+y≥y x y)