-
Notifications
You must be signed in to change notification settings - Fork 193
Open
Labels
questionFurther information is requestedFurther information is requested
Description
- Orion version: 0.6.1
- Python version: 3.11.10
3* Operating System: Ubuntu 24.04.1 LTS
statsmodels version: 0.14.4
Description
I want to use arima as my baseline model but i got an error while detecting the anomalies.
My multivarait dataset gets an value error when trying to detect anomalies. Tried to test with the multivariat tutorial:
https://github.com/sintel-dev/Orion/blob/master/tutorials/Orion_with_Multivariate_Input.ipynb
Error-Traceback:
ValueError Traceback (most recent call last)
Cell In[8], line 1
----> 1 orion.detect(data)
File ~/anaconda3/envs/orion_env/lib/python3.11/site-packages/orion/core.py:175, in Orion.detect(self, data, visualization)
153 def detect(self, data: pd.DataFrame, visualization: bool = False) -> pd.DataFrame:
154 """Detect anomalies in the given data..
155
156 If ``visualization=True``, also return the visualization
(...)
173 visualization outputs dict.
174 """
--> 175 return self._detect(self._mlpipeline.predict, data, visualization)
File ~/anaconda3/envs/orion_env/lib/python3.11/site-packages/orion/core.py:138, in Orion._detect(self, method, data, visualization, **kwargs)
135 else:
136 outputs_spec = 'default'
--> 138 outputs = method(data, output_=outputs_spec, **kwargs)
140 if visualization:
141 if visualization_names:
File ~/anaconda3/envs/orion_env/lib/python3.11/site-packages/mlblocks/mlpipeline.py:913, in MLPipeline.predict(self, X, output_, start_, debug, **kwargs)
910 LOGGER.debug('Skipping block %s produce', block_name)
911 continue
--> 913 self._produce_block(block, block_name, context, output_variables, outputs, debug_info)
915 # We already captured the output from this block
916 if block_name in output_blocks:
File ~/anaconda3/envs/orion_env/lib/python3.11/site-packages/mlblocks/mlpipeline.py:679, in MLPipeline._produce_block(self, block, block_name, context, output_variables, outputs, debug_info)
677 memory_before = process.memory_info().rss
678 start = datetime.utcnow()
--> 679 block_outputs = block.produce(**produce_args)
680 elapsed = datetime.utcnow() - start
681 memory_after = process.memory_info().rss
File ~/anaconda3/envs/orion_env/lib/python3.11/site-packages/mlblocks/mlblock.py:334, in MLBlock.produce(self, **kwargs)
331 return getattr(self.instance, self.produce_method)(**produce_kwargs)
333 produce_kwargs.update(self.get_hyperparameters())
--> 334 return self.primitive(**produce_kwargs)
File ~/anaconda3/envs/orion_env/lib/python3.11/site-packages/orion/primitives/timeseries_errors.py:41, in regression_errors(y, y_hat, smoothing_window, smooth, masking_window, mask)
13 def regression_errors(y, y_hat, smoothing_window=0.01, smooth=True,
14 masking_window=0.01, mask=False):
15 """Compute an array of absolute errors comparing predictions and expected output.
16
17 If smooth is True, apply EWMA to the resulting array of errors.
(...)
39 Array of errors.
40 """
---> 41 errors = np.abs(y - y_hat)[:, 0]
43 if not smooth:
44 return errors
ValueError: operands could not be broadcast together with shapes (9899,1) (247475,1) What I Did
I got the same error (different shapes) for my dataset, the s-1 dataset (univariat and multivariat)
Also the detect process gives hundreds if warnings like:
/home/medusa/anaconda3/envs/orion_env/lib/python3.11/site-packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals
warnings.warn("Maximum Likelihood optimization failed to "
/home/medusa/anaconda3/envs/orion_env/lib/python3.11/site-packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals
warnings.warn("Maximum Likelihood optimization failed to "
/home/medusa/anaconda3/envs/orion_env/lib/python3.11/site-packages/statsmodels/base/model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvalsTrying to solve problem with searching for solutions wasnt helpful.
Metadata
Metadata
Assignees
Labels
questionFurther information is requestedFurther information is requested