-
Notifications
You must be signed in to change notification settings - Fork 193
Open
Labels
questionFurther information is requestedFurther information is requested
Description
- Orion version:
- Python version:
- Operating System: Google Colab
Description
I have 5 columns dataset https://github.com/microsoft/fabric-samples/blob/main/docs-samples/real-time-intelligence/demo_stocks_change.csv . It takes alot of time for detecting anomalies
I have following code to run Anomalies
from orion.data import load_signal
signal_path = '/content/demo_stocks_change.csv'
import pandas as pd
df = pd.read_csv(signal_path)
df.rename(columns={'Date': 'timestamp'}, inplace=True)
df['timestamp'] = pd.to_datetime(df['timestamp'])
from orion import Orion
hyperparameters = {
"mlstars.custom.timeseries_preprocessing.time_segments_aggregate#1": {
'interval': 1
},
'orion.primitives.aer.AER#1': {
'epochs': 5,
'verbose': True
}
}
orion = Orion(
pipeline='aer',
hyperparameters=hyperparameters
)
orion.fit(df)
It takes more than 1 hour but I can not see any epoch progress in the output
Metadata
Metadata
Assignees
Labels
questionFurther information is requestedFurther information is requested