Skip to content

Long time taken for the Multivariate Anomaly Detection #594

@waqarkoc

Description

@waqarkoc
  • Orion version:
  • Python version:
  • Operating System: Google Colab

Description

I have 5 columns dataset https://github.com/microsoft/fabric-samples/blob/main/docs-samples/real-time-intelligence/demo_stocks_change.csv . It takes alot of time for detecting anomalies

I have following code to run Anomalies

from orion.data import load_signal

signal_path = '/content/demo_stocks_change.csv'
import pandas as pd
df = pd.read_csv(signal_path)
df.rename(columns={'Date': 'timestamp'}, inplace=True)
df['timestamp'] = pd.to_datetime(df['timestamp'])
from orion import Orion

hyperparameters = {
    "mlstars.custom.timeseries_preprocessing.time_segments_aggregate#1": {
        'interval': 1
    },
    'orion.primitives.aer.AER#1': {
        'epochs': 5,
        'verbose': True
    }
}

orion = Orion(
    pipeline='aer',
    hyperparameters=hyperparameters
)

orion.fit(df)

It takes more than 1 hour but I can not see any epoch progress in the output

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions