-
Notifications
You must be signed in to change notification settings - Fork 254
/
Copy path05 Equal sum partition.cpp
57 lines (49 loc) · 1.8 KB
/
05 Equal sum partition.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// https://www.geeksforgeeks.org/partition-problem-dp-18/
#include <bits/stdc++.h>
using namespace std;
bool isSubsetPossible(int arr[], int n, int sum) {
bool t[n + 1][sum + 1]; // DP - matrix
// initialization
// here we are setting 1st row and 1st column
// i denotes the size of the array
// j denotes the target sum (subset sum)
for (int i = 0; i <= n; i++) { // itereate as long it is less then length of the array
for (int j = 0; j <= sum; j++) {
if (i == 0)// when array(i) is empty than there is no meaning of sum of elements so return false
t[i][j] = false;
if (j == 0) // when sum(j) is zero and there is always a chance of empty subset so return it as true;
t[i][j] = true;
}
}
// start from 1 since 1st row and column is already considerd
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (arr[i - 1] <= j)
// after taking and element substract from the (sum) i.e -> in {3,8} 3 is taken then we want 11-3=8in the array
t[i][j] = t[i - 1][j - arr[i - 1]] || t[i - 1][j]; // either take or(||) do not take
else // if sum is less than array size just leave and increment
t[i][j] = t[i - 1][j];
}
}
return t[n][sum]; // at last return T/F
}
bool EqualSumPartitionPossible(int arr[], int n) {
int sum = 0; // sum of all elements of arr
for (int i = 0; i < n; i++) // take the sum of array
sum += arr[i];
if (sum % 2 != 0) // if sum is odd --> not possible to make equal partitions
return false;
return isSubsetPossible(arr, n, sum / 2); // when even divide sum of array into two part and apply subset sum
}
int main() {
int n; cin >> n;
int arr[n];
for (int i = 0; i < n; i++)
cin >> arr[i];
EqualSumPartitionPossible(arr, n) ? cout << "YES\n" : cout << "NO\n";
return 0;
}
/*
Time Complexity: O(sum * n)
Auxiliary Space: O(sum)
*/