-
Notifications
You must be signed in to change notification settings - Fork 254
/
Copy path04 KrushalsMinCostSpanningTreeFunction.cpp
89 lines (73 loc) · 1.99 KB
/
04 KrushalsMinCostSpanningTreeFunction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <iostream>
#define I 32767 // Infinity
#define V 7 // # of vertices in Graph
#define E 9 // # of edges in Graph
using namespace std;
void PrintMCST(int T[][V-1], int A[][E]){
cout << "\nMinimum Cost Spanning Tree Edges\n" << endl;
for (int i {0}; i<V-1; i++){
cout << "[" << T[0][i] << "]-----[" << T[1][i] << "]" << endl;
}
cout << endl;
}
// Set operations: Union and Find
void Union(int u, int v, int s[]){
if (s[u] < s[v]){
s[u] += s[v];
s[v] = u;
} else {
s[v] += s[u];
s[u] = v;
}
}
int Find(int u, int s[]){
int x = u;
int v = 0;
while (s[x] > 0){
x = s[x];
}
while (u != x){
v = s[u];
s[u] = x;
u = v;
}
return x;
}
void KruskalsMCST(int A[3][9]){
int T[2][V-1]; // Solution array
int track[E] {0}; // Track edges that are included in solution
int set[V+1] = {-1, -1, -1, -1, -1, -1, -1, -1}; // Array for finding cycle
int i {0};
while (i < V-1){
int min = I;
int u {0};
int v {0};
int k {0};
// Find a minimum cost edge
for (int j {0}; j<E; j++){
if (track[j] == 0 && A[2][j] < min){
min = A[2][j];
u = A[0][j];
v = A[1][j];
k = j;
}
}
// Check if the selected min cost edge (u, v) forming a cycle or not
if (Find(u, set) != Find(v, set)){
T[0][i] = u;
T[1][i] = v;
// Perform union
Union(Find(u, set), Find(v, set), set);
i++;
}
track[k] = 1;
}
PrintMCST(T, A);
}
int main() {
int edges[3][9] = {{ 1, 1, 2, 2, 3, 4, 4, 5, 5},
{ 2, 6, 3, 7, 4, 5, 7, 6, 7},
{25, 5, 12, 10, 8, 16, 14, 20, 18}};
KruskalsMCST(edges);
return 0;
}