-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
307 lines (250 loc) · 11.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
* FileName: model.py
* Author: Slatter
* Date: 2023/5/3 18:21
* Description:
"""
import math
from typing import List
from matplotlib import pyplot as plt
import pytorch_lightning as pl
from torch import nn, optim
from torchvision.utils import make_grid
from utils import *
class PositionalEncoding(nn.Module):
def __init__(self, num_steps: int, embed_dim: int):
super(PositionalEncoding, self).__init__()
self.embed_dim = embed_dim
half_dim = embed_dim // 2
den = torch.exp(- torch.arange(half_dim) * math.log(10000) / (half_dim - 1)) # (embed_dim)
pos = torch.arange(0, num_steps).view(num_steps, 1) # (num_steps, 1)
pos_embedding = torch.zeros((num_steps, half_dim * 2)) # (num_steps, embed_dim * 2)
pos_embedding[:, 0::2] = torch.sin(pos * den)
pos_embedding[:, 1::2] = torch.cos(pos * den)
self.register_buffer('pos_embedding', pos_embedding)
def forward(self, t: torch.Tensor):
"""
:param t: t moment (batch)
:return: positional embedding according to t moment (batch, embed_size)
"""
return self.pos_embedding[t]
class Block(nn.Module):
def __init__(self, channel_in, channel_out, time_embed_dim, up=False):
super(Block, self).__init__()
self.time_mlp = nn.Linear(time_embed_dim, channel_out)
self.up = up
if up: # up sample
# residual connection
self.conv1 = nn.Conv2d(2 * channel_in, channel_out, kernel_size=3, stride=1, padding=1)
self.transform = nn.ConvTranspose2d(channel_out, channel_out, kernel_size=4, stride=2, padding=1)
else: # down sample
self.conv1 = nn.Conv2d(channel_in, channel_out, kernel_size=3, stride=1, padding=1)
self.transform = nn.Conv2d(channel_out, channel_out, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(channel_out, channel_out, kernel_size=3, stride=1, padding=1)
self.bnorm1 = nn.BatchNorm2d(channel_out)
self.bnorm2 = nn.BatchNorm2d(channel_out)
self.relu = nn.ReLU()
def forward(self, x, t):
"""
one up sample or down sample process
:param x: (batch, channel_in, m, m)
:param t: (batch, time_embed_dim)
:return:
h2: (batch, channel_in, m, m) (up sample will be used for residual connection)
out: (batch, channel_out, m / 2, m / 2) for down sample, (batch, channel_out, m * 2, m * 2) for up sample
"""
# first convolution
h1 = self.bnorm1(self.relu(self.conv1(x))) # (batch, channel_out, m, m)
# time embedding
time_embed = self.relu(self.time_mlp(t)) # (batch, channel_out)
time_embed = time_embed.unsqueeze(dim=-1).unsqueeze(dim=-1) # (batch, channel_out, 1, 1)
# add time embed
h1 = time_embed + h1
# second convolution
h2 = self.bnorm2(self.relu(self.conv2(h1))) # (batch, channel_out, m, m)
# third convolution up sample or down sample
out = self.transform(h2)
return h2, out
class SimpleUnet(nn.Module):
def __init__(self, down_channels: List[int], up_channels: List[int], time_embed_dim: int, num_steps: int):
super(SimpleUnet, self).__init__()
self.down_channels = down_channels
self.up_channels = up_channels
self.time_embed_dim = time_embed_dim
self.position_embedding = PositionalEncoding(num_steps, time_embed_dim)
# down sample
self.downs = nn.ModuleList(
[Block(down_channels[i], down_channels[i + 1], time_embed_dim) for i in range(len(down_channels) - 1)])
# bottom layer
self.bottom = nn.Sequential(
nn.Conv2d(down_channels[-1], down_channels[-1] * 2, 3, 1, 1),
nn.ReLU(),
nn.BatchNorm2d(down_channels[-1] * 2),
nn.Conv2d(down_channels[-1] * 2, down_channels[-1] * 2, 3, 1, 1),
nn.ReLU(),
nn.BatchNorm2d(down_channels[-1] * 2),
nn.ConvTranspose2d(down_channels[-1] * 2, down_channels[-1], 4, 2, 1),
nn.ReLU(),
nn.BatchNorm2d(down_channels[-1])
)
# up sample
self.ups = nn.ModuleList(
[Block(up_channels[i], up_channels[i + 1], time_embed_dim, up=True) for i in range(len(up_channels) - 1)])
def forward(self, x, t):
"""
:param x: (batch, channel_in, image_size, image_size)
:param time_embed: (batch)
:return: (batch, channel_in, image_size, image_size)
"""
# embed time
time_embed = self.position_embedding(t) # (batch, embed_dim)
# down sample
residual_inputs = []
for down in self.downs:
h, x = down(x, time_embed)
residual_inputs.append(h)
# bottom layer
x = self.bottom(x)
# up sample
for up in self.ups:
residual_x = residual_inputs.pop()
# add residual x as additional channels
x = torch.cat([x, residual_x], dim=1)
h, x = up(x, time_embed)
out = h
return out
class DiffusionModel(pl.LightningModule):
def __init__(self, image_size, down_channels: List[int], up_channels: List[int], time_embed_dim: int, num_steps,
lr=1e-4):
super(DiffusionModel, self).__init__()
self.save_hyperparameters()
self.image_size = image_size
self.time_embed_dim = time_embed_dim
self.num_steps = num_steps
self.unet = SimpleUnet(down_channels, up_channels, time_embed_dim, num_steps)
self.lr = lr
self.criterion = nn.MSELoss()
# here are some constant parameters
self.betas = torch.linspace(1e-4, 2e-2, num_steps) # beta_{t}
self.alphas = 1 - self.betas # alpha_{t}
self.alphas_sqrt = torch.sqrt(self.alphas) # sqrt alpha_{t}
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # alpha_{t}_cumprod
self.alphas_cumprod_prev = torch.cat([torch.tensor([1.]), self.alphas_cumprod[:-1]],
dim=0) # alpha_{t-1}_cumprod
self.alphas_cumprod_sqrt = torch.sqrt(self.alphas_cumprod) # sqrt alpha_{t}_cumprod
self.one_minus_alphas_cumprod_sqrt = torch.sqrt(1 - self.alphas_cumprod) # sqrt 1 - alpha_{t}_cumprod
# used for test
self.check_every = 20 # check the quality of generated image every 20 epochs
self.test_to_device = False
self.test_noise = torch.randn(256, *self.image_size)
def move_to_device(self, x):
"""
move all tensors to device
"""
self.betas = self.betas.type_as(x)
self.alphas = self.alphas.type_as(x)
self.alphas_sqrt = self.alphas_sqrt.type_as(x)
self.alphas_cumprod = self.alphas_cumprod.type_as(x)
self.alphas_cumprod_prev = self.alphas_cumprod_prev.type_as(x)
self.alphas_cumprod_sqrt = self.alphas_cumprod_sqrt.type_as(x)
self.one_minus_alphas_cumprod_sqrt = self.one_minus_alphas_cumprod_sqrt.type_as(x)
self.test_noise = self.test_noise.type_as(x)
self.test_to_device = True
def forward_process(self, x_0, t):
"""
forward process
:param x_0: (batch, image_size)
:param t: t moment (batch)
:return x_t: (batch, image_size)
"""
gaussian_noise = torch.randn_like(x_0) # (batch, 3, 64, 64)
mean = self.alphas_cumprod_sqrt[t] # (batch)
mean = mean[:, None, None, None] # (batch, 1, 1, 1)
std = self.one_minus_alphas_cumprod_sqrt[t] # (batch)
std = std[:, None, None, None] # (batch, 1, 1, 1)
x_t = mean * x_0 + gaussian_noise * std # (batch, 3, 64, 64)
return gaussian_noise, x_t
def reverse_step(self, x_t, t):
"""
one reverse process step
:param x_t: (batch, image_size)
:param t: t moment a scalar
:return x_{t-1}: (batch, image_size)
"""
t = torch.tensor([t]).type_as(x_t).long() # (1)
denoise = self(x_t, t) # (batch, 3, 64, 64)
coef = (1 - self.alphas[t]) / self.one_minus_alphas_cumprod_sqrt[t] # (1)
mean = (1 / self.alphas_sqrt[t]) * (x_t - coef * denoise) # (batch, 3, 64, 64)
z = torch.randn_like(x_t) # (batch, 3, 64, 64)
sigma_t = self.betas[t].sqrt() # (1)
std = sigma_t * z # (batch, 3, 64, 64)
next_step = mean + std # (batch, 3, 64, 64)
return next_step
def reverse_process(self, x_t, show_process=False, img_nums=1, process_nums=10, save_path=None):
"""
full reverse process step
:param x_t: random guassian noise (batch, image_size):
:param show_process: show process or not
:param show_nums: how many images to show in the diffusion process
:param process_nums: how many process to show in the diffusion process
:param save_path: path to save diffusion process visualization
:return: x_0 (batch, image_size)
"""
if not self.test_to_device:
self.move_to_device(x_t)
step_size = math.ceil(self.num_steps / process_nums)
self.eval()
with torch.no_grad():
cur_x = x_t
for i in range(self.num_steps - 1, -1, -1):
cur_x = self.reverse_step(cur_x, i)
if show_process and i % step_size == 0:
col = process_nums - i // step_size
images = cur_x[:img_nums].detach().cpu() # (img_nums, h, w, c)
for j in range(images.shape[0]):
pos = j * process_nums + col
plt.subplot(img_nums, process_nums, pos)
plt.imshow(tensor_image_to_PIL(images[j]), cmap='gray')
plt.axis('off')
if show_process:
plt.savefig(save_path)
return cur_x
def compute_loss(self, x_0):
"""
:param x_0: (batch, image_size)
:return: loss
"""
bsz = x_0.size(0)
t = torch.randint(low=0, high=self.num_steps, size=(bsz,)).type_as(x_0).long() # (batch)
noise, x_t = self.forward_process(x_0, t) # forward process (batch, image_size)
output = self(x_t, t)
loss = self.criterion(noise, output)
return loss
def forward(self, x, t):
"""
:param x: (batch, image_size)
:param t: t moment (batch)
:return: generated noise (batch, image_size)
"""
return self.unet(x, t)
def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=self.lr)
return optimizer
def training_step(self, batch, batch_idx):
x, _ = batch
if not self.test_to_device: # move to device
self.move_to_device(x)
loss = self.compute_loss(x_0=x)
self.log('loss', loss)
return loss
def training_epoch_end(self, step_output):
loss = []
for x in step_output:
loss.append(x['loss'])
avg_loss = sum(loss) / len(step_output)
print('Loss: {:.2f}'.format(avg_loss))
if self.current_epoch % self.check_every == 0:
# log sampled images, it's a sequence of images, we use x_0
test_imgs = convert_image_to_natural(self.reverse_process(self.test_noise))
grid = make_grid(test_imgs, nrow=16)
self.logger.experiment.add_image("generated_images", grid, self.current_epoch)