Skip to content

Commit 581f669

Browse files
committed
added stock prediction README & fixed kmeans tutorial code
1 parent 1f46e8e commit 581f669

File tree

2 files changed

+10
-3
lines changed

2 files changed

+10
-3
lines changed

machine-learning/kmeans-image-segmentation/kmeans_segmentation.py

+9-2
Original file line numberDiff line numberDiff line change
@@ -28,8 +28,11 @@
2828
# convert back to 8 bit values
2929
centers = np.uint8(centers)
3030

31+
# flatten the labels array
32+
labels = labels.flatten()
33+
3134
# convert all pixels to the color of the centroids
32-
segmented_image = centers[labels.flatten()]
35+
segmented_image = centers[labels]
3336

3437
# reshape back to the original image dimension
3538
segmented_image = segmented_image.reshape(image.shape)
@@ -38,10 +41,14 @@
3841
plt.imshow(segmented_image)
3942
plt.show()
4043

41-
# disable only the cluster number 2
44+
# disable only the cluster number 2 (turn the pixel into black)
4245
masked_image = np.copy(image)
46+
# convert to the shape of k clusters
47+
masked_image = masked_image.reshape((-1, k))
4348
masked_image[labels == 2] = [0, 0, 0]
4449

50+
# convert back to original shape
51+
masked_image = masked_image.reshape(image.shape)
4552
# show the image
4653
plt.imshow(masked_image)
4754
plt.show()

machine-learning/stock-prediction/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,5 +2,5 @@
22

33
To run this:
44
- `pip3 install -r requirements.txt`
5-
- Please read the tutorial before using this, edit `parameters.py` for your needs and run `train.py`. This will start training using the parameters you specified, you can use `tensorboard` on `logs` folder to visualize your training process.
5+
- Please read the [tutorial](https://www.thepythoncode.com/article/stock-price-prediction-in-python-using-tensorflow-2-and-keras) before using this, edit `parameters.py` for your needs and run `train.py`. This will start training using the parameters you specified, you can use `tensorboard` on `logs` folder to visualize your training process.
66
- Once you trained your model, use `test.py` to evaluate and test your model.

0 commit comments

Comments
 (0)