|
| 1 | +import functools |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from scipy.stats import norm as ndist |
| 5 | + |
| 6 | +import regreg.api as rr |
| 7 | + |
| 8 | +from selection.tests.instance import gaussian_instance |
| 9 | +from knockoffs import lasso_glmnet |
| 10 | + |
| 11 | +from core import (infer_full_target, |
| 12 | + split_sampler, # split_sampler not working yet |
| 13 | + normal_sampler, |
| 14 | + logit_fit, |
| 15 | + probit_fit) |
| 16 | + |
| 17 | +def simulate(n=100, p=50, s=10, signal=(0, 0), sigma=2, alpha=0.1): |
| 18 | + |
| 19 | + # description of statistical problem |
| 20 | + |
| 21 | + X, y, truth = gaussian_instance(n=n, |
| 22 | + p=p, |
| 23 | + s=s, |
| 24 | + equicorrelated=False, |
| 25 | + rho=0.0, |
| 26 | + sigma=sigma, |
| 27 | + signal=signal, |
| 28 | + random_signs=True, |
| 29 | + scale=False)[:3] |
| 30 | + |
| 31 | + XTX = X.T.dot(X) |
| 32 | + XTXi = np.linalg.inv(XTX) |
| 33 | + resid = y - X.dot(XTXi.dot(X.T.dot(y))) |
| 34 | + dispersion = np.linalg.norm(resid)**2 / (n-p) |
| 35 | + |
| 36 | + S = X.T.dot(y) |
| 37 | + covS = dispersion * X.T.dot(X) |
| 38 | + smooth_sampler = normal_sampler(S, covS) |
| 39 | + splitting_sampler = split_sampler(X * y[:, None], covS) |
| 40 | + |
| 41 | + def meta_algorithm(X, XTXi, resid, sampler): |
| 42 | + |
| 43 | + S = sampler(scale=0.) # deterministic with scale=0 |
| 44 | + ynew = X.dot(XTXi).dot(S) + resid # will be ok for n>p and non-degen X |
| 45 | + G = lasso_glmnet(X, ynew, *[None]*4) |
| 46 | + select = G.select() |
| 47 | + return set(list(select[0])) |
| 48 | + |
| 49 | + selection_algorithm = functools.partial(meta_algorithm, X, XTXi, resid) |
| 50 | + |
| 51 | + # run selection algorithm |
| 52 | + |
| 53 | + observed_set = selection_algorithm(splitting_sampler) |
| 54 | + |
| 55 | + # find the target, based on the observed outcome |
| 56 | + |
| 57 | + # we just take the first target |
| 58 | + |
| 59 | + pivots, covered, lengths = [], [], [] |
| 60 | + naive_pivots, naive_covered, naive_lengths = [], [], [] |
| 61 | + |
| 62 | + for idx in list(observed_set)[:1]: |
| 63 | + print("variable: ", idx, "total selected: ", len(observed_set)) |
| 64 | + true_target = truth[idx] |
| 65 | + |
| 66 | + (pivot, |
| 67 | + interval) = infer_full_target(selection_algorithm, |
| 68 | + observed_set, |
| 69 | + idx, |
| 70 | + splitting_sampler, |
| 71 | + dispersion, |
| 72 | + hypothesis=true_target, |
| 73 | + fit_probability=probit_fit, |
| 74 | + alpha=alpha, |
| 75 | + B=500) |
| 76 | + |
| 77 | + pivots.append(pivot) |
| 78 | + covered.append((interval[0] < true_target) * (interval[1] > true_target)) |
| 79 | + lengths.append(interval[1] - interval[0]) |
| 80 | + |
| 81 | + target_sd = np.sqrt(dispersion * XTXi[idx, idx]) |
| 82 | + observed_target = np.squeeze(XTXi[idx].dot(X.T.dot(y))) |
| 83 | + quantile = ndist.ppf(1 - 0.5 * alpha) |
| 84 | + naive_interval = (observed_target-quantile * target_sd, observed_target+quantile * target_sd) |
| 85 | + naive_pivots.append((1-ndist.cdf((observed_target-true_target)/target_sd))) # one-sided |
| 86 | + |
| 87 | + naive_covered.append((naive_interval[0]<true_target)*(naive_interval[1]>true_target)) |
| 88 | + naive_lengths.append(naive_interval[1]-naive_interval[0]) |
| 89 | + |
| 90 | + return pivots, covered, lengths, naive_pivots, naive_covered, naive_lengths |
| 91 | + |
| 92 | + |
| 93 | +if __name__ == "__main__": |
| 94 | + import statsmodels.api as sm |
| 95 | + import matplotlib.pyplot as plt |
| 96 | + |
| 97 | + np.random.seed(1) |
| 98 | + |
| 99 | + U = np.linspace(0, 1, 101) |
| 100 | + P, L, coverage = [], [], [] |
| 101 | + naive_P, naive_L, naive_coverage = [], [], [] |
| 102 | + plt.clf() |
| 103 | + for i in range(500): |
| 104 | + p, cover, l, naive_p, naive_covered, naive_l = simulate() |
| 105 | + coverage.extend(cover) |
| 106 | + P.extend(p) |
| 107 | + L.extend(l) |
| 108 | + naive_P.extend(naive_p) |
| 109 | + naive_coverage.extend(naive_covered) |
| 110 | + naive_L.extend(naive_l) |
| 111 | + |
| 112 | + print("selective:", np.mean(P), np.std(P), np.mean(L) , np.mean(coverage)) |
| 113 | + print("naive:", np.mean(naive_P), np.std(naive_P), np.mean(naive_L), np.mean(naive_coverage)) |
| 114 | + print("len ratio selective divided by naive:", np.mean(np.array(L) / np.array(naive_L))) |
| 115 | + |
| 116 | + if i % 2 == 0 and i > 0: |
| 117 | + plt.clf() |
| 118 | + plt.plot(U, sm.distributions.ECDF(P)(U), 'r', label='Selective', linewidth=3) |
| 119 | + plt.plot([0,1], [0,1], 'k--', linewidth=2) |
| 120 | + plt.plot(U, sm.distributions.ECDF(naive_P)(U), 'b', label='Naive', linewidth=3) |
| 121 | + plt.legend() |
| 122 | + plt.savefig('lasso_example_null_CV.pdf') |
0 commit comments