|
| 1 | +import functools |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +from scipy.stats import norm as ndist |
| 5 | + |
| 6 | +from selection.distributions.discrete_family import discrete_family |
| 7 | + |
| 8 | +from samplers import normal_sampler |
| 9 | + |
| 10 | +class mixture_learner(object): |
| 11 | + |
| 12 | + def __init__(self, |
| 13 | + algorithm, |
| 14 | + observed_outcome, |
| 15 | + observed_sampler, |
| 16 | + observed_target, |
| 17 | + target_cov, |
| 18 | + cross_cov): |
| 19 | + |
| 20 | + """ |
| 21 | + Learn a function |
| 22 | +
|
| 23 | + P(Y=1|T, N=S-c*T) |
| 24 | +
|
| 25 | + where N is the sufficient statistic corresponding to nuisance parameters and T is our target. |
| 26 | + The random variable Y is |
| 27 | +
|
| 28 | + Y = check_selection(algorithm(new_sampler)) |
| 29 | +
|
| 30 | + That is, we perturb the center of observed_sampler along a ray (or higher-dimensional affine |
| 31 | + subspace) and rerun the algorithm, checking to see if the test `check_selection` passes. |
| 32 | +
|
| 33 | + For full model inference, `check_selection` will typically check to see if a given feature |
| 34 | + is still in the selected set. For general targets, we will typically condition on the exact observed value |
| 35 | + of `algorithm(observed_sampler)`. |
| 36 | +
|
| 37 | + Parameters |
| 38 | + ---------- |
| 39 | +
|
| 40 | + algorithm : callable |
| 41 | + Selection algorithm that takes a noise source as its only argument. |
| 42 | +
|
| 43 | + observed_set : set(int) |
| 44 | + The purported value `algorithm(observed_sampler)`, i.e. run with the original seed. |
| 45 | +
|
| 46 | + feature : int |
| 47 | + One of the elements of observed_set. |
| 48 | +
|
| 49 | + observed_sampler : `normal_source` |
| 50 | + Representation of the data used in the selection procedure. |
| 51 | +
|
| 52 | + learning_proposal : callable |
| 53 | + Proposed position of new T to add to evaluate algorithm at. |
| 54 | + """ |
| 55 | + |
| 56 | + (self.algorithm, |
| 57 | + self.observed_outcome, |
| 58 | + self.observed_sampler, |
| 59 | + self.observed_target, |
| 60 | + self.target_cov, |
| 61 | + self.cross_cov) = (algorithm, |
| 62 | + observed_outcome, |
| 63 | + observed_sampler, |
| 64 | + observed_target, |
| 65 | + target_cov, |
| 66 | + cross_cov) |
| 67 | + |
| 68 | + def learning_proposal(self): |
| 69 | + sd = np.sqrt(self.target_cov) |
| 70 | + center = self.observed_target |
| 71 | + scale = np.random.choice([0.5, 1, 1.5, 2], 1) |
| 72 | + return np.random.standard_normal() * sd * scale + center |
| 73 | + |
| 74 | + def learn(self, |
| 75 | + fit_probability, |
| 76 | + fit_args = {}, |
| 77 | + B=500, |
| 78 | + check_selection=None): |
| 79 | + |
| 80 | + """ |
| 81 | + fit_probability : callable |
| 82 | + Function to learn a probability model P(Y=1|T) based on [T, Y]. |
| 83 | +
|
| 84 | + fit_args : dict |
| 85 | + Keyword arguments to `fit_probability`. |
| 86 | +
|
| 87 | + B : int |
| 88 | + How many queries? |
| 89 | +
|
| 90 | + check_selection : callable (optional) |
| 91 | + Callable that determines selection variable. |
| 92 | +
|
| 93 | + """ |
| 94 | + |
| 95 | + (algorithm, |
| 96 | + observed_outcome, |
| 97 | + observed_sampler, |
| 98 | + observed_target, |
| 99 | + target_cov, |
| 100 | + cross_cov) = (self.algorithm, |
| 101 | + self.observed_outcome, |
| 102 | + self.observed_sampler, |
| 103 | + self.observed_target, |
| 104 | + self.target_cov, |
| 105 | + self.cross_cov) |
| 106 | + |
| 107 | + S = selection_stat = observed_sampler.center |
| 108 | + |
| 109 | + new_sampler = normal_sampler(observed_sampler.center.copy(), |
| 110 | + observed_sampler.covariance.copy()) |
| 111 | + |
| 112 | + if check_selection is None: |
| 113 | + check_selection = lambda result: result == observed_outcome |
| 114 | + |
| 115 | + direction = cross_cov.dot(np.linalg.inv(target_cov).reshape((1,1))) # move along a ray through S with this direction |
| 116 | + |
| 117 | + learning_Y, learning_T = [], [] |
| 118 | + |
| 119 | + def random_meta_algorithm(new_sampler, algorithm, check_selection, T): |
| 120 | + new_sampler.center = S + direction.dot(T - observed_target) |
| 121 | + new_result = algorithm(new_sampler) |
| 122 | + return check_selection(new_result) |
| 123 | + |
| 124 | + random_algorithm = functools.partial(random_meta_algorithm, new_sampler, algorithm, check_selection) |
| 125 | + |
| 126 | + # this is the "active learning bit" |
| 127 | + # START |
| 128 | + |
| 129 | + for _ in range(B): |
| 130 | + T = self.learning_proposal() # a guess at informative distribution for learning what we want |
| 131 | + Y = random_algorithm(T) |
| 132 | + |
| 133 | + learning_Y.append(Y) |
| 134 | + learning_T.append(T) |
| 135 | + |
| 136 | + learning_Y = np.array(learning_Y, np.float) |
| 137 | + learning_T = np.squeeze(np.array(learning_T, np.float)) |
| 138 | + |
| 139 | + print('prob(select): ', np.mean(learning_Y)) |
| 140 | + conditional_law = fit_probability(learning_T, learning_Y, **fit_args) |
| 141 | + return conditional_law |
| 142 | + |
0 commit comments