-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathio.c
747 lines (615 loc) · 19.1 KB
/
io.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/ktime.h>
#include <linux/highmem.h>
#include <linux/sched/clock.h>
#include "nvmev.h"
#include "dma.h"
#if (SUPPORTED_SSD_TYPE(CONV) || SUPPORTED_SSD_TYPE(ZNS))
#include "ssd.h"
#else
struct buffer;
#endif
#undef PERF_DEBUG
#define sq_entry(entry_id) sq->sq[SQ_ENTRY_TO_PAGE_NUM(entry_id)][SQ_ENTRY_TO_PAGE_OFFSET(entry_id)]
#define cq_entry(entry_id) cq->cq[CQ_ENTRY_TO_PAGE_NUM(entry_id)][CQ_ENTRY_TO_PAGE_OFFSET(entry_id)]
extern bool io_using_dma;
static inline unsigned int __get_io_worker(int sqid)
{
#ifdef CONFIG_NVMEV_IO_WORKER_BY_SQ
return (sqid - 1) % nvmev_vdev->config.nr_io_workers;
#else
return nvmev_vdev->io_worker_turn;
#endif
}
static inline unsigned long long __get_wallclock(void)
{
return cpu_clock(nvmev_vdev->config.cpu_nr_dispatcher);
}
static inline size_t __cmd_io_offset(struct nvme_rw_command *cmd)
{
return (cmd->slba) << LBA_BITS;
}
static inline size_t __cmd_io_size(struct nvme_rw_command *cmd)
{
return (cmd->length + 1) << LBA_BITS;
}
static unsigned int __do_perform_io(int sqid, int sq_entry)
{
struct nvmev_submission_queue *sq = nvmev_vdev->sqes[sqid];
struct nvme_rw_command *cmd = &sq_entry(sq_entry).rw;
size_t offset;
size_t length, remaining;
int prp_offs = 0;
int prp2_offs = 0;
u64 paddr;
u64 *paddr_list = NULL;
size_t nsid = cmd->nsid - 1; // 0-based
offset = __cmd_io_offset(cmd);
length = __cmd_io_size(cmd);
remaining = length;
while (remaining) {
size_t io_size;
void *vaddr;
size_t mem_offs = 0;
prp_offs++;
if (prp_offs == 1) {
paddr = cmd->prp1;
} else if (prp_offs == 2) {
paddr = cmd->prp2;
if (remaining > PAGE_SIZE) {
paddr_list = kmap_atomic_pfn(PRP_PFN(paddr)) +
(paddr & PAGE_OFFSET_MASK);
paddr = paddr_list[prp2_offs++];
}
} else {
paddr = paddr_list[prp2_offs++];
}
vaddr = kmap_atomic_pfn(PRP_PFN(paddr));
io_size = min_t(size_t, remaining, PAGE_SIZE);
if (paddr & PAGE_OFFSET_MASK) {
mem_offs = paddr & PAGE_OFFSET_MASK;
if (io_size + mem_offs > PAGE_SIZE)
io_size = PAGE_SIZE - mem_offs;
}
if (cmd->opcode == nvme_cmd_write ||
cmd->opcode == nvme_cmd_zone_append) {
memcpy(nvmev_vdev->ns[nsid].mapped + offset, vaddr + mem_offs, io_size);
} else if (cmd->opcode == nvme_cmd_read) {
memcpy(vaddr + mem_offs, nvmev_vdev->ns[nsid].mapped + offset, io_size);
}
kunmap_atomic(vaddr);
remaining -= io_size;
offset += io_size;
}
if (paddr_list != NULL)
kunmap_atomic(paddr_list);
return length;
}
static u64 paddr_list[513] = {
0,
}; // Not using index 0 to make max index == num_prp
static unsigned int __do_perform_io_using_dma(int sqid, int sq_entry)
{
struct nvmev_submission_queue *sq = nvmev_vdev->sqes[sqid];
struct nvme_rw_command *cmd = &sq_entry(sq_entry).rw;
size_t offset;
size_t length, remaining;
int prp_offs = 0;
int prp2_offs = 0;
int num_prps = 0;
u64 paddr;
u64 *tmp_paddr_list = NULL;
size_t io_size;
size_t mem_offs = 0;
offset = __cmd_io_offset(cmd);
length = __cmd_io_size(cmd);
remaining = length;
memset(paddr_list, 0, sizeof(paddr_list));
/* Loop to get the PRP list */
while (remaining) {
io_size = 0;
prp_offs++;
if (prp_offs == 1) {
paddr_list[prp_offs] = cmd->prp1;
} else if (prp_offs == 2) {
paddr_list[prp_offs] = cmd->prp2;
if (remaining > PAGE_SIZE) {
tmp_paddr_list = kmap_atomic_pfn(PRP_PFN(paddr_list[prp_offs])) +
(paddr_list[prp_offs] & PAGE_OFFSET_MASK);
paddr_list[prp_offs] = tmp_paddr_list[prp2_offs++];
}
} else {
paddr_list[prp_offs] = tmp_paddr_list[prp2_offs++];
}
io_size = min_t(size_t, remaining, PAGE_SIZE);
if (paddr_list[prp_offs] & PAGE_OFFSET_MASK) {
mem_offs = paddr_list[prp_offs] & PAGE_OFFSET_MASK;
if (io_size + mem_offs > PAGE_SIZE)
io_size = PAGE_SIZE - mem_offs;
}
remaining -= io_size;
}
num_prps = prp_offs;
if (tmp_paddr_list != NULL)
kunmap_atomic(tmp_paddr_list);
remaining = length;
prp_offs = 1;
/* Loop for data transfer */
while (remaining) {
size_t page_size;
mem_offs = 0;
io_size = 0;
page_size = 0;
paddr = paddr_list[prp_offs];
page_size = min_t(size_t, remaining, PAGE_SIZE);
/* For non-page aligned paddr, it will never be between continuous PRP list (Always first paddr) */
if (paddr & PAGE_OFFSET_MASK) {
mem_offs = paddr & PAGE_OFFSET_MASK;
if (page_size + mem_offs > PAGE_SIZE) {
page_size = PAGE_SIZE - mem_offs;
}
}
for (prp_offs++; prp_offs <= num_prps; prp_offs++) {
if (paddr_list[prp_offs] == paddr_list[prp_offs - 1] + PAGE_SIZE)
page_size += PAGE_SIZE;
else
break;
}
io_size = min_t(size_t, remaining, page_size);
if (cmd->opcode == nvme_cmd_write ||
cmd->opcode == nvme_cmd_zone_append) {
ioat_dma_submit(paddr, nvmev_vdev->config.storage_start + offset, io_size);
} else if (cmd->opcode == nvme_cmd_read) {
ioat_dma_submit(nvmev_vdev->config.storage_start + offset, paddr, io_size);
}
remaining -= io_size;
offset += io_size;
}
return length;
}
static void __insert_req_sorted(unsigned int entry, struct nvmev_io_worker *worker,
unsigned long nsecs_target)
{
/**
* Requests are placed in @work_queue sorted by their target time.
* @work_queue is statically allocated and the ordered list is
* implemented by chaining the indexes of entries with @prev and @next.
* This implementation is nasty but we do this way over dynamically
* allocated linked list to minimize the influence of dynamic memory allocation.
* Also, this O(n) implementation can be improved to O(logn) scheme with
* e.g., red-black tree but....
*/
if (worker->io_seq == -1) {
worker->io_seq = entry;
worker->io_seq_end = entry;
} else {
unsigned int curr = worker->io_seq_end;
while (curr != -1) {
if (worker->work_queue[curr].nsecs_target <= worker->latest_nsecs)
break;
if (worker->work_queue[curr].nsecs_target <= nsecs_target)
break;
curr = worker->work_queue[curr].prev;
}
if (curr == -1) { /* Head inserted */
worker->work_queue[worker->io_seq].prev = entry;
worker->work_queue[entry].next = worker->io_seq;
worker->io_seq = entry;
} else if (worker->work_queue[curr].next == -1) { /* Tail */
worker->work_queue[entry].prev = curr;
worker->io_seq_end = entry;
worker->work_queue[curr].next = entry;
} else { /* In between */
worker->work_queue[entry].prev = curr;
worker->work_queue[entry].next = worker->work_queue[curr].next;
worker->work_queue[worker->work_queue[entry].next].prev = entry;
worker->work_queue[curr].next = entry;
}
}
}
static struct nvmev_io_worker *__allocate_work_queue_entry(int sqid, unsigned int *entry)
{
unsigned int io_worker_turn = __get_io_worker(sqid);
struct nvmev_io_worker *worker = &nvmev_vdev->io_workers[io_worker_turn];
unsigned int e = worker->free_seq;
struct nvmev_io_work *w = worker->work_queue + e;
if (w->next >= NR_MAX_PARALLEL_IO) {
WARN_ON_ONCE("IO queue is almost full");
return NULL;
}
if (++io_worker_turn == nvmev_vdev->config.nr_io_workers)
io_worker_turn = 0;
nvmev_vdev->io_worker_turn = io_worker_turn;
worker->free_seq = w->next;
BUG_ON(worker->free_seq >= NR_MAX_PARALLEL_IO);
*entry = e;
return worker;
}
static void __enqueue_io_req(int sqid, int cqid, int sq_entry, unsigned long long nsecs_start,
struct nvmev_result *ret)
{
struct nvmev_submission_queue *sq = nvmev_vdev->sqes[sqid];
struct nvmev_io_worker *worker;
struct nvmev_io_work *w;
unsigned int entry;
worker = __allocate_work_queue_entry(sqid, &entry);
if (!worker)
return;
w = worker->work_queue + entry;
NVMEV_DEBUG_VERBOSE("%s/%u[%d], sq %d cq %d, entry %d, %llu + %llu\n", worker->thread_name, entry,
sq_entry(sq_entry).rw.opcode, sqid, cqid, sq_entry, nsecs_start,
ret->nsecs_target - nsecs_start);
/////////////////////////////////
w->sqid = sqid;
w->cqid = cqid;
w->sq_entry = sq_entry;
w->command_id = sq_entry(sq_entry).common.command_id;
w->nsecs_start = nsecs_start;
w->nsecs_enqueue = local_clock();
w->nsecs_target = ret->nsecs_target;
w->status = ret->status;
w->is_completed = false;
w->is_copied = false;
w->prev = -1;
w->next = -1;
w->is_internal = false;
mb(); /* IO worker shall see the updated w at once */
__insert_req_sorted(entry, worker, ret->nsecs_target);
}
void schedule_internal_operation(int sqid, unsigned long long nsecs_target,
struct buffer *write_buffer, size_t buffs_to_release)
{
struct nvmev_io_worker *worker;
struct nvmev_io_work *w;
unsigned int entry;
worker = __allocate_work_queue_entry(sqid, &entry);
if (!worker)
return;
w = worker->work_queue + entry;
NVMEV_DEBUG_VERBOSE("%s/%u, internal sq %d, %llu + %llu\n", worker->thread_name, entry, sqid,
local_clock(), nsecs_target - local_clock());
/////////////////////////////////
w->sqid = sqid;
w->nsecs_start = w->nsecs_enqueue = local_clock();
w->nsecs_target = nsecs_target;
w->is_completed = false;
w->is_copied = true;
w->prev = -1;
w->next = -1;
w->is_internal = true;
w->write_buffer = write_buffer;
w->buffs_to_release = buffs_to_release;
mb(); /* IO worker shall see the updated w at once */
__insert_req_sorted(entry, worker, nsecs_target);
}
static void __reclaim_completed_reqs(void)
{
unsigned int turn;
for (turn = 0; turn < nvmev_vdev->config.nr_io_workers; turn++) {
struct nvmev_io_worker *worker;
struct nvmev_io_work *w;
unsigned int first_entry = -1;
unsigned int last_entry = -1;
unsigned int curr;
int nr_reclaimed = 0;
worker = &nvmev_vdev->io_workers[turn];
first_entry = worker->io_seq;
curr = first_entry;
while (curr != -1) {
w = &worker->work_queue[curr];
if (w->is_completed == true && w->is_copied == true &&
w->nsecs_target <= worker->latest_nsecs) {
last_entry = curr;
curr = w->next;
nr_reclaimed++;
} else {
break;
}
}
if (last_entry != -1) {
w = &worker->work_queue[last_entry];
worker->io_seq = w->next;
if (w->next != -1) {
worker->work_queue[w->next].prev = -1;
}
w->next = -1;
w = &worker->work_queue[first_entry];
w->prev = worker->free_seq_end;
w = &worker->work_queue[worker->free_seq_end];
w->next = first_entry;
worker->free_seq_end = last_entry;
NVMEV_DEBUG_VERBOSE("%s: %u -- %u, %d\n", __func__,
first_entry, last_entry, nr_reclaimed);
}
}
}
static size_t __nvmev_proc_io(int sqid, int sq_entry, size_t *io_size)
{
struct nvmev_submission_queue *sq = nvmev_vdev->sqes[sqid];
unsigned long long nsecs_start = __get_wallclock();
struct nvme_command *cmd = &sq_entry(sq_entry);
#if (BASE_SSD == KV_PROTOTYPE)
uint32_t nsid = 0; // Some KVSSD programs give 0 as nsid for KV IO
#else
uint32_t nsid = cmd->common.nsid - 1;
#endif
struct nvmev_ns *ns = &nvmev_vdev->ns[nsid];
struct nvmev_request req = {
.cmd = cmd,
.sq_id = sqid,
.nsecs_start = nsecs_start,
};
struct nvmev_result ret = {
.nsecs_target = nsecs_start,
.status = NVME_SC_SUCCESS,
};
#ifdef PERF_DEBUG
unsigned long long prev_clock = local_clock();
unsigned long long prev_clock2 = 0;
unsigned long long prev_clock3 = 0;
unsigned long long prev_clock4 = 0;
static unsigned long long clock1 = 0;
static unsigned long long clock2 = 0;
static unsigned long long clock3 = 0;
static unsigned long long counter = 0;
#endif
if (!ns->proc_io_cmd(ns, &req, &ret))
return false;
*io_size = __cmd_io_size(&sq_entry(sq_entry).rw);
#ifdef PERF_DEBUG
prev_clock2 = local_clock();
#endif
__enqueue_io_req(sqid, sq->cqid, sq_entry, nsecs_start, &ret);
#ifdef PERF_DEBUG
prev_clock3 = local_clock();
#endif
__reclaim_completed_reqs();
#ifdef PERF_DEBUG
prev_clock4 = local_clock();
clock1 += (prev_clock2 - prev_clock);
clock2 += (prev_clock3 - prev_clock2);
clock3 += (prev_clock4 - prev_clock3);
counter++;
if (counter > 1000) {
NVMEV_DEBUG("LAT: %llu, ENQ: %llu, CLN: %llu\n", clock1 / counter, clock2 / counter,
clock3 / counter);
clock1 = 0;
clock2 = 0;
clock3 = 0;
counter = 0;
}
#endif
return true;
}
int nvmev_proc_io_sq(int sqid, int new_db, int old_db)
{
struct nvmev_submission_queue *sq = nvmev_vdev->sqes[sqid];
int num_proc = new_db - old_db;
int seq;
int sq_entry = old_db;
int latest_db;
if (unlikely(!sq))
return old_db;
if (unlikely(num_proc < 0))
num_proc += sq->queue_size;
for (seq = 0; seq < num_proc; seq++) {
size_t io_size;
if (!__nvmev_proc_io(sqid, sq_entry, &io_size))
break;
if (++sq_entry == sq->queue_size) {
sq_entry = 0;
}
sq->stat.nr_dispatched++;
sq->stat.nr_in_flight++;
sq->stat.total_io += io_size;
}
sq->stat.nr_dispatch++;
sq->stat.max_nr_in_flight = max_t(int, sq->stat.max_nr_in_flight, sq->stat.nr_in_flight);
latest_db = (old_db + seq) % sq->queue_size;
return latest_db;
}
void nvmev_proc_io_cq(int cqid, int new_db, int old_db)
{
struct nvmev_completion_queue *cq = nvmev_vdev->cqes[cqid];
int i;
for (i = old_db; i != new_db; i++) {
int sqid = cq_entry(i).sq_id;
if (i >= cq->queue_size) {
i = -1;
continue;
}
/* Should check the validity here since SPDK deletes SQ immediately
* before processing associated CQes */
if (!nvmev_vdev->sqes[sqid]) continue;
nvmev_vdev->sqes[sqid]->stat.nr_in_flight--;
}
cq->cq_tail = new_db - 1;
if (new_db == -1)
cq->cq_tail = cq->queue_size - 1;
}
static void __fill_cq_result(struct nvmev_io_work *w)
{
int sqid = w->sqid;
int cqid = w->cqid;
int sq_entry = w->sq_entry;
unsigned int command_id = w->command_id;
unsigned int status = w->status;
unsigned int result0 = w->result0;
unsigned int result1 = w->result1;
struct nvmev_completion_queue *cq = nvmev_vdev->cqes[cqid];
int cq_head = cq->cq_head;
struct nvme_completion *cqe = &cq_entry(cq_head);
spin_lock(&cq->entry_lock);
cqe->command_id = command_id;
cqe->sq_id = sqid;
cqe->sq_head = sq_entry;
cqe->status = cq->phase | (status << 1);
cqe->result0 = result0;
cqe->result1 = result1;
if (++cq_head == cq->queue_size) {
cq_head = 0;
cq->phase = !cq->phase;
}
cq->cq_head = cq_head;
cq->interrupt_ready = true;
spin_unlock(&cq->entry_lock);
}
static int nvmev_io_worker(void *data)
{
struct nvmev_io_worker *worker = (struct nvmev_io_worker *)data;
struct nvmev_ns *ns;
static unsigned long last_io_time = 0;
#ifdef PERF_DEBUG
static unsigned long long intr_clock[NR_MAX_IO_QUEUE + 1];
static unsigned long long intr_counter[NR_MAX_IO_QUEUE + 1];
unsigned long long prev_clock;
#endif
NVMEV_INFO("%s started on cpu %d (node %d)\n", worker->thread_name, smp_processor_id(),
cpu_to_node(smp_processor_id()));
while (!kthread_should_stop()) {
unsigned long long curr_nsecs_wall = __get_wallclock();
unsigned long long curr_nsecs_local = local_clock();
long long delta = curr_nsecs_wall - curr_nsecs_local;
volatile unsigned int curr = worker->io_seq;
int qidx;
while (curr != -1) {
struct nvmev_io_work *w = &worker->work_queue[curr];
unsigned long long curr_nsecs = local_clock() + delta;
worker->latest_nsecs = curr_nsecs;
if (w->is_completed == true) {
curr = w->next;
continue;
}
if (w->is_copied == false) {
#ifdef PERF_DEBUG
w->nsecs_copy_start = local_clock() + delta;
#endif
if (w->is_internal) {
;
} else if (io_using_dma) {
__do_perform_io_using_dma(w->sqid, w->sq_entry);
} else {
#if (BASE_SSD == KV_PROTOTYPE)
struct nvmev_submission_queue *sq =
nvmev_vdev->sqes[w->sqid];
ns = &nvmev_vdev->ns[0];
if (ns->identify_io_cmd(ns, sq_entry(w->sq_entry))) {
w->result0 = ns->perform_io_cmd(
ns, &sq_entry(w->sq_entry), &(w->status));
} else {
__do_perform_io(w->sqid, w->sq_entry);
}
#else
__do_perform_io(w->sqid, w->sq_entry);
#endif
}
#ifdef PERF_DEBUG
w->nsecs_copy_done = local_clock() + delta;
#endif
w->is_copied = true;
last_io_time = jiffies;
NVMEV_DEBUG_VERBOSE("%s: copied %u, %d %d %d\n", worker->thread_name, curr,
w->sqid, w->cqid, w->sq_entry);
}
if (w->nsecs_target <= curr_nsecs) {
if (w->is_internal) {
#if (SUPPORTED_SSD_TYPE(CONV) || SUPPORTED_SSD_TYPE(ZNS))
buffer_release((struct buffer *)w->write_buffer,
w->buffs_to_release);
#endif
} else {
__fill_cq_result(w);
}
NVMEV_DEBUG_VERBOSE("%s: completed %u, %d %d %d\n", worker->thread_name, curr,
w->sqid, w->cqid, w->sq_entry);
#ifdef PERF_DEBUG
w->nsecs_cq_filled = local_clock() + delta;
trace_printk("%llu %llu %llu %llu %llu %llu\n", w->nsecs_start,
w->nsecs_enqueue - w->nsecs_start,
w->nsecs_copy_start - w->nsecs_start,
w->nsecs_copy_done - w->nsecs_start,
w->nsecs_cq_filled - w->nsecs_start,
w->nsecs_target - w->nsecs_start);
#endif
mb(); /* Reclaimer shall see after here */
w->is_completed = true;
}
curr = w->next;
}
for (qidx = 1; qidx <= nvmev_vdev->nr_cq; qidx++) {
struct nvmev_completion_queue *cq = nvmev_vdev->cqes[qidx];
#ifdef CONFIG_NVMEV_IO_WORKER_BY_SQ
if ((worker->id) != __get_io_worker(qidx))
continue;
#endif
if (cq == NULL || !cq->irq_enabled)
continue;
if (mutex_trylock(&cq->irq_lock)) {
if (cq->interrupt_ready == true) {
#ifdef PERF_DEBUG
prev_clock = local_clock();
#endif
cq->interrupt_ready = false;
nvmev_signal_irq(cq->irq_vector);
#ifdef PERF_DEBUG
intr_clock[qidx] += (local_clock() - prev_clock);
intr_counter[qidx]++;
if (intr_counter[qidx] > 1000) {
NVMEV_DEBUG("Intr %d: %llu\n", qidx,
intr_clock[qidx] / intr_counter[qidx]);
intr_clock[qidx] = 0;
intr_counter[qidx] = 0;
}
#endif
}
mutex_unlock(&cq->irq_lock);
}
}
if (CONFIG_NVMEVIRT_IDLE_TIMEOUT != 0 &&
time_after(jiffies, last_io_time + (CONFIG_NVMEVIRT_IDLE_TIMEOUT * HZ)))
schedule_timeout_interruptible(1);
else
cond_resched();
}
return 0;
}
void NVMEV_IO_WORKER_INIT(struct nvmev_dev *nvmev_vdev)
{
unsigned int i, worker_id;
nvmev_vdev->io_workers =
kcalloc(sizeof(struct nvmev_io_worker), nvmev_vdev->config.nr_io_workers, GFP_KERNEL);
nvmev_vdev->io_worker_turn = 0;
for (worker_id = 0; worker_id < nvmev_vdev->config.nr_io_workers; worker_id++) {
struct nvmev_io_worker *worker = &nvmev_vdev->io_workers[worker_id];
worker->work_queue =
kzalloc(sizeof(struct nvmev_io_work) * NR_MAX_PARALLEL_IO, GFP_KERNEL);
for (i = 0; i < NR_MAX_PARALLEL_IO; i++) {
worker->work_queue[i].next = i + 1;
worker->work_queue[i].prev = i - 1;
}
worker->work_queue[NR_MAX_PARALLEL_IO - 1].next = -1;
worker->id = worker_id;
worker->free_seq = 0;
worker->free_seq_end = NR_MAX_PARALLEL_IO - 1;
worker->io_seq = -1;
worker->io_seq_end = -1;
snprintf(worker->thread_name, sizeof(worker->thread_name), "nvmev_io_worker_%d", worker_id);
worker->task_struct = kthread_create(nvmev_io_worker, worker, "%s", worker->thread_name);
kthread_bind(worker->task_struct, nvmev_vdev->config.cpu_nr_io_workers[worker_id]);
wake_up_process(worker->task_struct);
}
}
void NVMEV_IO_WORKER_FINAL(struct nvmev_dev *nvmev_vdev)
{
unsigned int i;
for (i = 0; i < nvmev_vdev->config.nr_io_workers; i++) {
struct nvmev_io_worker *worker = &nvmev_vdev->io_workers[i];
if (!IS_ERR_OR_NULL(worker->task_struct)) {
kthread_stop(worker->task_struct);
}
kfree(worker->work_queue);
}
kfree(nvmev_vdev->io_workers);
}