-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_datasets.py
467 lines (414 loc) · 27.1 KB
/
aggregate_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# TODO: remove unused
import pandas as pd
import numpy as np
import os
import argparse
import ast
import string
import re
import os
from datetime import datetime, timezone, timedelta
def info(verbose, msg):
"""Print message to stdout if verbose is True.
Args:
verbose (bool): if True, print message.
msg (str): debugging message
"""
if verbose:
print(f"[INFO] {msg}")
def license_type(contents):
"""Categorise license into permissive, non-permissive, none and unknown.
Args:
contents (pd.DataFrame): dataframe with column "license".
Returns:
pd.DataFrame: same dataframe with added column "license_type".
"""
contents = contents.copy()
permissive_licenses = ["mit", "gpl-3.0", "apache-2.0", "bsd-3-clause", "gpl-2.0", "bsd-2-clause"] # https://en.wikipedia.org/wiki/Permissive_software_license
contents.license = contents.license.fillna('None')
# TODO: refactor with np.select?
contents["license_type"] = np.where(
contents.license.isin(permissive_licenses), "permissive", np.where(
contents.license == "None", "None", np.where(
contents.license == "other", "unknown", "non-permissive")))
return contents
def team_size(contributions):
"""Count the number of (active) contributors for each repository over time. A user is an active contributor if they made at least one commit in last 12 weeks.
Args:
contributions (pd.DataFrame): dataframe with GitHub commit data
Returns:
pd.DataFrame: data frame where each row corresponds to one week in a repo's life and includes the number of active contributors and overall contributors
"""
team_df = contributions[["github_user_cleaned_url", "author", "week_since_repo_creation_week_co", "commits"]].set_index(["github_user_cleaned_url", "author", "week_since_repo_creation_week_co"]).sort_index()
# user is active contributor if made at least one commit in last 12 weeks
windowed_team_df = team_df.groupby(level=["github_user_cleaned_url", "author"]).rolling(window=12, min_periods=0).sum().droplevel([0, 1])
final_index = windowed_team_df.index.droplevel(1).unique()
windowed_team_df["active_contributors"] = windowed_team_df.commits > 0
# contributor team size
contrib_team_size = windowed_team_df.groupby(level=["github_user_cleaned_url", "week_since_repo_creation_week_co"])["active_contributors"].value_counts()[:,:,True].reindex(final_index, fill_value=0).astype(int)
# overall pool of contributors
contributor_pool_df = team_df.groupby(["github_user_cleaned_url", "author"]).cumsum()
contributor_pool_df["contributors"] = contributor_pool_df.commits > 0
contrib_pool = contributor_pool_df.groupby(level=["github_user_cleaned_url", "week_since_repo_creation_week_co"])["contributors"].value_counts()[:,:,True].reindex(final_index, fill_value=0).astype(int)
contributors_df = pd.merge(contrib_team_size, contrib_pool, left_index=True, right_index=True)
contributors_df.index.rename({"week_since_repo_creation_week_co": "week_since_repo_creation"}, inplace=True)
return contributors_df
def readme_size_classification(contents):
"""Classify the amount of detail in a README file based on its size. Thresholds were determined empirically.
Args:
contents (pd.DataFrame): dataframe with column "readme_size"
Returns:
pd.DataFrame: same dataframe with added column "readme_size_class".
"""
def map_size(byte_size): # TODO: refactor with np.select?
if byte_size < 1:
return "none"
if byte_size < 300:
return "ultra-short"
if byte_size < 1500:
return "short"
if byte_size < 10000:
return "informative"
else: # larger than 10000 Bytes
return "detailed"
contents["readme_size_class"] = contents.readme_size.map(map_size)
return contents
def load_data(data_dir, filename, to_datetime=None):
"""Load dataframes from file and convert relevant dolumns to datetime type.
Args:
data_dir (str): path to data folder
filename (str): name of data file
to_datetime (list<str> | str, optional): Columns that should be converted to datetime. Defaults to None.
Returns:
pd.DataFrame: modified data frame
"""
df = pd.read_csv(os.path.join(data_dir, filename), index_col=0)
if type(to_datetime) == list:
for dt in to_datetime:
df[dt] = pd.to_datetime(df[dt], utc=True)
elif type(to_datetime) == str:
df[to_datetime] = pd.to_datetime(df[to_datetime], utc=True)
return df
def aggregate_week_since_repo_creation(metadata, df, label=None):
"""Translate date columns into weeks since repo creation.
Args:
metadata (pd.DataFrame): dataframe with columns "github_user_cleaned_url" and "created_at"
df (pd.DataFrame): dataframe that should be aggregated
label (list<str> | str, optional): column name(s) with date information
Returns:
pd.DataFrame: input dataframe with added column "week_since_repo_creation_{original_column_name}"
"""
repo_creation_df = metadata[["created_at", "github_user_cleaned_url"]].rename(columns={"created_at": "repo_created_at"})
df = pd.merge(df, repo_creation_df, on="github_user_cleaned_url")
if type(label) == list:
for column in label:
df[f"week_since_repo_creation_{column}"] = (df[column] - df.repo_created_at).dt.days // 7
elif type(label) == str:
df[f"week_since_repo_creation_{label}"] = (df[label] - df.repo_created_at).dt.days // 7
return df
def filter_repo(df, repo):
"""Choose subset of dataframe that deals with a specific GitHub repository.
Args:
df (pd.DataFrame): dataframe with column "github_user_cleaned_url"
repo (str): GitHub repository ID
Returns:
pd.DataFrame: input dataframe with only the columns for the given repo.
"""
return df[df["github_user_cleaned_url"] == repo]
def clean_headings(readme_df):
"""Remove digits (e.g. heading or version numbering) from headings, convert to lowercase.
Args:
readme_df (pd.DataFrame): dataframe with README history, including columns "added_headings" and "deleted_headings"
Returns:
pd.DataFrame: input dataframe with additional columns "cleaned_added_headings" and "cleaned_deleted_headings"
"""
def clean(headings_list):
l = ast.literal_eval(headings_list)
to_remove = string.digits + string.whitespace + ".:"
cleaned_headings_list = []
for h in l:
h = h.lstrip(to_remove)
# remove markdown-style links
pattern = r"\[(.+?)\]\(.+?\)"
h = re.sub(pattern, r'\1', h, count=0)
h = h.replace(string.punctuation, "")
h = h.strip(string.punctuation)
h = h.lower()
cleaned_headings_list.append(h)
return cleaned_headings_list
readme_df["cleaned_added_headings"] = readme_df.added_headings.map(clean, na_action="ignore")
readme_df["cleaned_deleted_headings"] = readme_df.deleted_headings.map(clean, na_action="ignore")
return readme_df
def engagement_counts(stars, forks):
"""Count forks and stars for each repository
Args:
stars (pd.DataFrame): dataframe with columns "github_user_cleaned_url" and "user" for each added fork
forks (pd.DataFrame): dataframe with columns "github_user_cleaned_url" and "user" for each added star
Returns:
pd.DataFrame: dataframe with columns "github_user_cleaned_url", "stars_count", "forks_count"
"""
fork_counts = forks.groupby("github_user_cleaned_url")["user"].count()
fork_counts.rename("forks_count", inplace=True)
star_counts = stars.groupby("github_user_cleaned_url")["user"].count()
star_counts.rename("stars_count", inplace=True)
engagement_df = pd.concat([fork_counts, star_counts], axis=1).reset_index()
return engagement_df
############## timeline
def analyse_headings(df):
"""Map added headings to relevant ownership and usage vocabulary. Vocabulary is constructed based on empirical findings so will likely not be complete.
Args:
df (pd.DataFrame): dataframe with column "added_headings"
Returns:
pd.DataFrame: same dataframe with added boolean columns "ownership_addtion" and "usage_addition"
"""
interesting_words = {
"ownership": ["license", "example", "reference", "citation", "cited", "publication", "paper"],
"usage": ["requirements", "using", "example", "usage", "run", "install", "installing", "installation", "tutorial", "tutorials", "build", "guide", "documentation"]
}
df = df.fillna(value={"added_headings": ""})
df["ownership_addition"] = df.added_headings.str.contains("|".join(interesting_words["ownership"]), case=False)
df["usage_addition"] = df.added_headings.str.contains("|".join(interesting_words["usage"]), case=False)
df = df.astype({
"ownership_addition": bool,
"usage_addition": bool
})
return df
def user_type_wrt_issues(issues, timelines_df):
"""Determine issue user status (opening, closing, both, inactive).
Args:
issues (pd.DataFrame): dataframe with issue data
timelines_df (pd.DataFrame): dataframe from timeline_init
Returns:
pd.DataFrame: dataframe with columns "created_count", "closed_count", "user_status" for each user of each repo in each week of life of the repo
"""
# count number of created and closed issues by user + week
created = issues.groupby(["github_user_cleaned_url", "user", "week_since_repo_creation_created_at"])["state"].count().rename("created_count")
created.index.rename({"week_since_repo_creation_created_at": "week_since_repo_creation"}, inplace=True)
closed = issues.groupby(["github_user_cleaned_url", "closed_by", "week_since_repo_creation_closed_at"])["state"].count().rename("closed_count")
closed.index.rename({"week_since_repo_creation_closed_at": "week_since_repo_creation", "closed_by": "user"}, inplace=True)
issues_by_user = pd.merge(created, closed, left_index=True, right_index=True, how="outer").reset_index()
issues_by_user["week_since_repo_creation"] = issues_by_user["week_since_repo_creation"].astype(int)
issue_users_per_repo = issues_by_user.groupby("github_user_cleaned_url")["user"].unique()
# build timeline DataFrame
df = pd.merge(timelines_df, issue_users_per_repo, left_index=True, right_index=True, how="left").explode("user")
df = df.reset_index().set_index(["github_user_cleaned_url", "week_since_repo_creation", "user"])
issues_by_user = issues_by_user.set_index(["github_user_cleaned_url", "week_since_repo_creation", "user"])
df = pd.merge(df, issues_by_user, left_index=True, right_index=True, how="left")
df.fillna(0, inplace=True)
# determine user status with window of 12 weeks onwards
windowed_issue_user_df = df.groupby(level="user").rolling(window=12, min_periods=0).sum().droplevel(0)
conditions = [(windowed_issue_user_df.created_count > 0) & (windowed_issue_user_df.closed_count == 0),
(windowed_issue_user_df.created_count == 0) & (windowed_issue_user_df.closed_count > 0),
(windowed_issue_user_df.created_count > 0) & (windowed_issue_user_df.closed_count > 0)]
choices = ["opening", "closing", "both"]
windowed_issue_user_df["user_status"] = np.select(conditions, choices, default="inactive")
return windowed_issue_user_df
def user_type_wrt_commits(contributions):
"""Determine commit author status (active, inactive) and number of commits over time.
Args:
contributions (pd.DataFrame): dataframe with GitHub commit data
Returns:
pd.DataFrame: dataframe with columns 'commits', 'active_contributors' for each repo, week and user
"""
team_df = contributions[["github_user_cleaned_url", "author", "week_since_repo_creation_week_co", "commits"]].set_index(["github_user_cleaned_url", "author", "week_since_repo_creation_week_co"]).sort_index()
# user is active contributor if made at least one commit in last 12 weeks
windowed_team_df = team_df.groupby(level=["github_user_cleaned_url", "author"]).rolling(window=12, min_periods=0).sum().droplevel([0, 1])
windowed_team_df["active_contributors"] = windowed_team_df.commits > 0
windowed_team_df.index.rename({"week_since_repo_creation_week_co": "week_since_repo_creation"}, inplace=True)
return windowed_team_df
def no_open_and_closed_issues(issues, timelines_df):
"""Build a timeline of weekly open and closed issue counts.
Args:
issues (pd.DataFrame): dataframe with issue data
timelines_df (pd.DataFrame): dataframe from timeline_init
Returns:
pd.DataFrame: dataframe with columns closed_count, open_count for each repo and week
"""
timelines_df.reset_index(inplace=True)
# merge weeks for issue opening events
opened_issues_weekly_df = pd.merge(timelines_df, issues[["github_user_cleaned_url", "week_since_repo_creation_created_at"]], how="left", left_on=["github_user_cleaned_url", "week_since_repo_creation"], right_on=["github_user_cleaned_url", "week_since_repo_creation_created_at"])
opened_issues_weekly_df["week_since_repo_creation"].fillna(opened_issues_weekly_df["week_since_repo_creation_created_at"], inplace=True) # NaN will happen for issues created in negative weeks
# merge weeks for issue closing events
closed_issues_weekly_df = pd.merge(timelines_df, issues[["github_user_cleaned_url", "week_since_repo_creation_closed_at"]], how="left", left_on=["github_user_cleaned_url", "week_since_repo_creation"], right_on=["github_user_cleaned_url", "week_since_repo_creation_closed_at"])
closed_issues_weekly_df["week_since_repo_creation"].fillna(closed_issues_weekly_df["week_since_repo_creation_closed_at"], inplace=True) # NaN will happen for issues created in negative weeks
# cumulative counts
count_open = opened_issues_weekly_df.groupby(["github_user_cleaned_url", "week_since_repo_creation"])["week_since_repo_creation_created_at"].count().groupby(level=0).cumsum()
count_closed = closed_issues_weekly_df.groupby(["github_user_cleaned_url", "week_since_repo_creation"])["week_since_repo_creation_closed_at"].count().groupby(level=0).cumsum().rename("closed_count")
issue_counts_df = pd.DataFrame(count_closed)
issue_counts_df["open_count"] = count_open - issue_counts_df["closed_count"]
issue_counts_df = issue_counts_df.astype({
"closed_count": int,
"open_count": int
})
return issue_counts_df
def engagement(forks, stars, timelines_df):
"""Build a timeline of weekly forks and stars counts.
Args:
forks (pd.DataFrame): dataframe with fork events data
stars (pd.DataFrame): dataframe with star events data
timelines_df (pd.DataFrame): dataframe from timeline_init
Returns:
pd.DataFrame: dataframe with columns forks_count, stars_count for each repo and week
"""
forks_df = forks[["github_user_cleaned_url", "week_since_repo_creation_date", "user"]].groupby(["github_user_cleaned_url", "week_since_repo_creation_date"]).count().rename(columns={"user": "forks_count"}).sort_index()
stars_df = stars[["github_user_cleaned_url", "week_since_repo_creation_date", "user"]].groupby(["github_user_cleaned_url", "week_since_repo_creation_date"]).count().rename(columns={"user": "stars_count"}).sort_index()
engagement_df = pd.merge(timelines_df, forks_df, left_on=["github_user_cleaned_url", "week_since_repo_creation"], right_index=True, how="outer")
engagement_df = pd.merge(engagement_df, stars_df, left_on=["github_user_cleaned_url", "week_since_repo_creation"], right_index=True, how="outer").fillna(0)
engagement_df = engagement_df.set_index(["github_user_cleaned_url", "week_since_repo_creation"])
engagement_df = engagement_df.groupby(level=0).cumsum()
engagement_df = engagement_df.astype({
"forks_count": int,
"stars_count": int
})
return engagement_df
def date_highlights(readme_history, contents, paper_data, timelines_df):
"""_summary_
Args:
readme_history (pd.DataFrame): dataframe with columns 'github_user_cleaned_url', 'week_since_repo_creation_author_date', 'ownership_addition', 'usage_addition', 'added_cites'
contents (pd.DataFrane): dataframe with columns 'github_user_cleaned_url', 'week_since_repo_creation_citation_added', 'week_since_repo_creation_contributing_added'
paper_data (pd.DataFrame): dataframe with columns 'github_user_cleaned_url', 'week_since_repo_creation_date'
timelines_df (pd.DataFrame): dataframe from timeline_init
Returns:
pd.DataFrame: dataframe with columns paper_published, contributing_file_added, citation_file_added, citation_added, usage_added, ownership_added for each repo and week
"""
timelines_df.set_index(["github_user_cleaned_url", "week_since_repo_creation"], inplace=True)
event_weeks_data = {}
event_weeks_data["ownership_added"] = readme_history[readme_history.ownership_addition].loc[:, ["week_since_repo_creation_author_date", "github_user_cleaned_url"]].rename(columns={"week_since_repo_creation_author_date": "week_since_repo_creation"})
event_weeks_data["usage_added"] = readme_history[readme_history.usage_addition].loc[:, ["week_since_repo_creation_author_date", "github_user_cleaned_url"]].rename(columns={"week_since_repo_creation_author_date": "week_since_repo_creation"})
event_weeks_data["citation_added"] = readme_history[(readme_history.added_cites != "[]") & (readme_history.added_cites.notna())].loc[:, ["week_since_repo_creation_author_date", "github_user_cleaned_url"]].rename(columns={"week_since_repo_creation_author_date": "week_since_repo_creation"})
event_weeks_data["citation_file_added"] = contents[contents.week_since_repo_creation_citation_added.notna()].loc[:, ["week_since_repo_creation_citation_added", "github_user_cleaned_url"]].rename(columns={"week_since_repo_creation_citation_added": "week_since_repo_creation"})
event_weeks_data["contributing_file_added"] = contents[contents.week_since_repo_creation_contributing_added.notna()].loc[:, ["week_since_repo_creation_contributing_added", "github_user_cleaned_url"]].rename(columns={"week_since_repo_creation_contributing_added": "week_since_repo_creation"})
event_weeks_data["paper_published"] = paper_data[paper_data.week_since_repo_creation_date.notna()].loc[:, ["week_since_repo_creation_date", "github_user_cleaned_url"]].rename(columns={"week_since_repo_creation_date": "week_since_repo_creation"})
for k, v in event_weeks_data.items():
v[k] = True
v.set_index(["github_user_cleaned_url", "week_since_repo_creation"], inplace=True)
timelines_df = pd.merge(timelines_df, v, how="left", left_index=True, right_index=True)
timelines_df = timelines_df.fillna(value={k: False})
return timelines_df
def timelines_init(metadata, contents, contributions, forks, stars, issues, readme_history):
"""Prepare timelines dataframe with one row for each "week of life" of each GitHub repository.
Args:
metadata (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
contents (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
contributions (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
forks (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
stars (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
issues (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
readme_history (pd.DataFrame): respective dataframe with aggregated columns "week_since_repo_creation_{original_column_name}"
Returns:
pd.DataFrame: dataframe with columns "github_user_cleaned_url" and "week_since_repo_creation"
"""
def merge_min_max_weeks(min_max_week_df, df, week_col, name):
if type(week_col) == str:
max_series = df.groupby("github_user_cleaned_url")[week_col].max().rename(f"max_{name}")
min_series = df.groupby("github_user_cleaned_url")[week_col].min().rename(f"min_{name}")
elif type(week_col) == list:
max_series = df.groupby("github_user_cleaned_url")[week_col].max().fillna(0).max(axis=1).rename(f"max_{name}")
min_series = df.groupby("github_user_cleaned_url")[week_col].min().fillna(0).min(axis=1).rename(f"min_{name}")
min_max_week_df = pd.merge(min_max_week_df, max_series, how="left", left_on="github_user_cleaned_url", right_index=True)
min_max_week_df = pd.merge(min_max_week_df, min_series, how="left", left_on="github_user_cleaned_url", right_index=True)
return min_max_week_df
# determine max week from all dataframes
min_max_week_df = pd.DataFrame({"github_user_cleaned_url": metadata["github_user_cleaned_url"]})
min_max_week_df = merge_min_max_weeks(min_max_week_df, contents, ["week_since_repo_creation_citation_added", "week_since_repo_creation_contributing_added"], "week_contents")
min_max_week_df = merge_min_max_weeks(min_max_week_df, contributions, "week_since_repo_creation_week_co", "week_contributions")
min_max_week_df = merge_min_max_weeks(min_max_week_df, forks, "week_since_repo_creation_date", "week_forks")
min_max_week_df = merge_min_max_weeks(min_max_week_df, stars, "week_since_repo_creation_date", "week_stars")
min_max_week_df = merge_min_max_weeks(min_max_week_df, issues, ["week_since_repo_creation_created_at", "week_since_repo_creation_closed_at"], "week_issues")
min_max_week_df = merge_min_max_weeks(min_max_week_df, readme_history, "week_since_repo_creation_author_date", "week_readme_history")
min_max_week_df = min_max_week_df.fillna(0)
# determine overall min and max week
max_week_df = min_max_week_df.set_index("github_user_cleaned_url").max(axis=1).rename("max_week").astype(int)
min_week_df = min_max_week_df.set_index("github_user_cleaned_url").min(axis=1).rename("min_week").astype(int)
min_max_week_df = pd.merge(max_week_df, min_week_df, left_index=True, right_index=True).reset_index()
# add entry for each repo life week
#min_max_week_df["week_since_repo_creation"] = min_max_week_df["max_week"].map(lambda end: np.arange(end+1))
min_max_week_df["week_since_repo_creation"] = min_max_week_df.apply(lambda row: np.arange(row["min_week"], row["max_week"]+1), axis=1)
min_max_week_df.drop(["min_week", "max_week"], axis=1, inplace=True)
timelines_df = min_max_week_df.explode("week_since_repo_creation")
timelines_df = timelines_df.set_index("github_user_cleaned_url")
return timelines_df
def main(githubdir, eprintsdir, outdir, verbose):
info(verbose, f"Loading data...")
metadata = load_data(githubdir, "metadata.csv", "created_at")
contents = load_data(githubdir, "contents.csv", ["citation_added", "contributing_added"])
contributions = load_data(githubdir, "contributions.csv", "week_co")
forks = load_data(githubdir, "forks.csv", "date")
stars = load_data(githubdir, "stars.csv", "date")
issues = load_data(githubdir, "issues.csv", ["created_at", "closed_at"])
readme_history = load_data(githubdir, "readme_history.csv", "author_date")
paper_data = load_data(os.path.join(eprintsdir, "cleaned_repo_urls"), "joined.csv", "date")
info(verbose, "Data loading complete.")
info(verbose, "Preprocessing...")
contents = aggregate_week_since_repo_creation(metadata, contents, ["citation_added", "contributing_added"])
contributions = aggregate_week_since_repo_creation(metadata, contributions, "week_co")
forks = aggregate_week_since_repo_creation(metadata, forks, "date")
stars = aggregate_week_since_repo_creation(metadata, stars, "date")
issues = aggregate_week_since_repo_creation(metadata, issues, ["created_at", "closed_at"])
readme_history = aggregate_week_since_repo_creation(metadata, readme_history, "author_date")
readme_history = clean_headings(readme_history)
paper_data = aggregate_week_since_repo_creation(metadata, paper_data, "date")
info(verbose, "Aggregating overall...")
contents = license_type(contents)
contents = readme_size_classification(contents)
engagement_df = engagement_counts(stars, forks)
contributors = team_size(contributions)
print(contributors.reset_index())
max_active_contributors = contributors.reset_index().groupby("github_user_cleaned_url")["active_contributors"].max().rename("max_active_contributors")
overall_df = pd.merge(
pd.merge(
pd.merge(
metadata, contents,
on="github_user_cleaned_url",
how="left"
), engagement_df,
on="github_user_cleaned_url",
how="left"
), max_active_contributors,
how="left",
left_on="github_user_cleaned_url",
right_index=True
)
overall_df.to_csv(os.path.join(outdir, "aggregated_overall.csv"))
info(verbose, "Overall aggregation complete.")
info(verbose, "Aggregating timelines...")
readme_history = analyse_headings(readme_history)
timelines_df = timelines_init(metadata, contents, contributions, forks, stars, issues, readme_history)
issue_users_timeline_df = user_type_wrt_issues(issues, timelines_df)
commit_authors_timeline_df = user_type_wrt_commits(contributions)
issue_users_timeline_df.to_csv(os.path.join(outdir, "aggregated_issue_user_timeline.csv"))
commit_authors_timeline_df.to_csv(os.path.join(outdir, "aggregated_commit_author_timeline.csv"))
issue_counts_df = no_open_and_closed_issues(issues, timelines_df)
engagement_df = engagement(forks, stars, timelines_df)
highlights_df = date_highlights(readme_history, contents, paper_data, timelines_df)
contributors = pd.merge(timelines_df, contributors, how="left", left_index=True, right_index=True)
contributors.fillna(value={"active_contributors": 0, "contributors": 0}, inplace=True)
overall_timeline_df = pd.merge(
pd.merge(
pd.merge(
issue_counts_df, contributors,
left_index=True,
right_index=True,
how="left"
), engagement_df,
left_index=True,
right_index=True,
how="left"
), highlights_df,
left_index=True,
right_index=True,
how="left"
)
overall_timeline_df.to_csv(os.path.join(outdir, "aggregated_timeline.csv"))
info(verbose, "Timeline aggregation complete.")
if __name__=="__main__":
parser = argparse.ArgumentParser(
prog="aggregate_datasets",
description="Aggregate crawled data into output datasets."
)
parser.add_argument("--githubdir", default="../../data/raw/github", type=str, help="path to GitHub data directory")
parser.add_argument("--eprintsdir", default="../../data/raw/eprints", type=str, help="path to ePrints data directory")
parser.add_argument("--outdir", default="../../data/derived", type=str, help="path to use for output data")
parser.add_argument("-v", "--verbose", action="store_true", help="enable verbose output")
args = parser.parse_args()
main(args.githubdir, args.eprintsdir, args.outdir, args.verbose)