-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_volume.py
847 lines (650 loc) · 26.8 KB
/
linear_volume.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
"""Implements a parametric volume as a 3-tuple of linear interpolation instances, one each for u, v and l.
Based on code from bspline_surface.py
"""
from __future__ import division
import logging, sys, math, pickle
from collections import namedtuple
from scipy.interpolate import LinearNDInterpolator
import numpy as np
from past.utils import old_div
def euclidean_distance(a, b):
"""Row-wise euclidean distance.
a, b are row vectors of points.
"""
return np.sqrt(np.sum((a - b) ** 2, axis=1))
def cartesian_product(arrays, out=None):
"""
Generate a cartesian product of input arrays.
Parameters
----------
arrays : list of array-like
1-D arrays to form the cartesian product of.
out : ndarray
Array to place the cartesian product in.
Returns
-------
out : ndarray
2-D array of shape (M, len(arrays)) containing cartesian products
formed of input arrays.
Examples
--------
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
"""
arrays = [np.asarray(x) for x in arrays]
dtype = arrays[0].dtype
n = np.prod([x.size for x in arrays])
if out is None:
out = np.zeros([n, len(arrays)], dtype=dtype)
m = old_div(n, arrays[0].size)
out[:, 0] = np.repeat(arrays[0], m)
if arrays[1:]:
cartesian_product(arrays[1:], out=out[0:m, 1:])
for j in range(1, arrays[0].size):
out[j * m:(j + 1) * m, 1:] = out[0:m, 1:]
return out
class LinearVolume(object):
def __init__(self, u, v, l, xyz):
"""Parametric (u,v,l) 3D volume approximation.
Parameters
----------
u, v, l : array_like
1-D arrays of coordinates.
xyz : array_like
3-D array of (x, y, z) data with shape (3, u.size, v.size).
"""
self._create_vol(u, v, l, xyz)
self.u = u
self.v = v
self.l = l
self.xyz = xyz
self.tri = None
self.facets = None
self.facet_counts = None
@classmethod
def load(cls, filename):
f = open(filename, "rb")
s = pickle.load(f)
f.close()
return cls(**s)
def save(self, filename, basis_name):
s = {'u': self.u, 'v': self.v, 'l': self.l, 'xyz': self.xyz}
f = open(filename, "wb")
pickle.dump(s, f)
f.close()
def __call__(self, *args, **kwargs):
"""Convenience to allow evaluation of a LinearVolume
instance via `foo(0, 0, 0)` instead of `foo.ev(0, 0, 0)`.
"""
return self.ev(*args, **kwargs)
def _create_vol(self, obs_u, obs_v, obs_l, xyz, **kwargs):
# Create volume definitions
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
uvl_obs = np.array([u.ravel(), v.ravel(), l.ravel()]).T
xvol = LinearNDInterpolator(uvl_obs, xyz[:, 0], fill_value=xyz[0, 0], **kwargs)
yvol = LinearNDInterpolator(uvl_obs, xyz[:, 1], fill_value=xyz[0, 1], **kwargs)
zvol = LinearNDInterpolator(uvl_obs, xyz[:, 2], fill_value=xyz[0, 2], **kwargs)
uvol = LinearNDInterpolator(xyz, uvl_obs[:, 0], fill_value=uvl_obs[0, 0], **kwargs)
vvol = LinearNDInterpolator(xyz, uvl_obs[:, 1], fill_value=uvl_obs[0, 1], **kwargs)
lvol = LinearNDInterpolator(xyz, uvl_obs[:, 2], fill_value=uvl_obs[0, 2], **kwargs)
self._xvol = xvol
self._yvol = yvol
self._zvol = zvol
self._uvol = uvol
self._vvol = vvol
self._lvol = lvol
def _resample_uv(self, ures, vres):
"""Helper function to re-sample to u and v parameters
at the specified resolution
"""
u, v = self.u, self.v
lu, lv = len(u), len(v)
nus = np.array(list(enumerate(u))).T
nvs = np.array(list(enumerate(v))).T
newundxs = np.linspace(0, lu - 1, ures * lu - (ures - 1))
newvndxs = np.linspace(0, lv - 1, vres * lv - (vres - 1))
hru = np.interp(newundxs, *nus)
hrv = np.interp(newvndxs, *nvs)
return hru, hrv
def _resample_uvl(self, ures, vres, lres):
"""Helper function to re-sample u, v and l parameters
at the specified resolution
"""
u, v, l = self.u, self.v, self.l
lu, lv, ll = len(u), len(v), len(l)
nus = np.array(list(enumerate(u))).T
nvs = np.array(list(enumerate(v))).T
nls = np.array(list(enumerate(l))).T
newundxs = np.linspace(0, lu - 1, ures * lu - (ures - 1))
newvndxs = np.linspace(0, lv - 1, vres * lv - (vres - 1))
newlndxs = np.linspace(0, ll - 1, lres * ll - (lres - 1))
hru = np.interp(newundxs, *nus)
hrv = np.interp(newvndxs, *nvs)
hrl = np.interp(newlndxs, *nls)
return hru, hrv, hrl
def ev(self, su, sv, sl, mesh=True, chunk_size=1000, return_coords=False):
"""Get point(s) in volume at (su, sv, sl).
Parameters
----------
u, v, l : scalar or array-like
return_coords : boolean, return the coordinates that were evaluated
Returns
-------
if option mesh is True: Returns an array of shape len(u) x len(v) x len(l) x 3
"""
if mesh:
U, V, L = np.meshgrid(su, sv, sl)
else:
U = np.asarray(su)
V = np.asarray(sv)
L = np.asarray(sl)
assert (len(U) == len(V))
assert (len(U) == len(L))
uvl_coords = np.array([U.ravel(), V.ravel(), L.ravel()]).T
X = self._xvol(uvl_coords)
Y = self._yvol(uvl_coords)
Z = self._zvol(uvl_coords)
arr = np.array([X, Y, Z])
if return_coords:
return (arr.reshape(3, len(U), -1), uvl_coords)
else:
return arr.reshape(3, len(U), -1)
def inverse(self, xyz):
"""Get parametric coordinates (u, v, l) that correspond to the given x, y, z.
May return None if x, y, z are outside the interpolation domain.
Parameters
----------
xyz : array of coordinates
Returns
-------
Returns an array of shape 3 x len(xyz)
"""
U = self._uvol(xyz)
V = self._vvol(xyz)
L = self._lvol(xyz)
arr = np.array([U, V, L])
return arr.T
def utan(self, su, sv, sl, normalize=True):
u = np.array([su]).reshape(-1, )
v = np.array([sv]).reshape(-1, )
l = np.array([sl]).reshape(-1, )
dxdu = self._xvol(u, v, l, diff=np.asarray([1, 0, 0]))
dydu = self._yvol(u, v, l, diff=np.asarray([1, 0, 0]))
dzdu = self._zvol(u, v, l, diff=np.asarray([1, 0, 0]))
du = np.array([dxdu, dydu, dzdu]).T
du = du.swapaxes(0, 1)
if normalize:
du /= np.sqrt((du ** 2).sum(axis=2))[:, :, np.newaxis]
arr = du.transpose(2, 0, 1)
return arr
def vtan(self, su, sv, sl, normalize=True):
u = np.array([su]).reshape(-1, )
v = np.array([sv]).reshape(-1, )
l = np.array([sl]).reshape(-1, )
dxdv = self._xvol(u, v, l, diff=np.asarray([0, 1, 0]))
dydv = self._yvol(u, v, l, diff=np.asarray([0, 1, 0]))
dzdv = self._zvol(u, v, l, diff=np.asarray([0, 1, 0]))
dv = np.array([dxdv, dydv, dzdv]).T
dv = dv.swapaxes(0, 1)
if normalize:
dv /= np.sqrt((dv ** 2).sum(axis=2))[:, :, np.newaxis]
arr = dv.transpose(2, 0, 1)
return arr
def normal(self, su, sv, sl):
"""Get normal(s) at (u, v, l).
Parameters
----------
u, v, l : scalar or array-like
u and v may be scalar or vector (see below)
Returns
-------
Returns an array of shape 3 x len(u) x len(v) x len(l)
"""
u = np.array([su]).reshape(-1, )
v = np.array([sv]).reshape(-1, )
l = np.array([sl]).reshape(-1, )
dxdus = self._xvol(u, v, l, diff=np.asarray([1, 0, 0]))
dydus = self._yvol(u, v, l, diff=np.asarray([1, 0, 0]))
dzdus = self._zvol(u, v, l, diff=np.asarray([1, 0, 0]))
dxdvs = self._xvol(u, v, l, diff=np.asarray([0, 1, 0]))
dydvs = self._yvol(u, v, l, diff=np.asarray([0, 1, 0]))
dzdvs = self._zvol(u, v, l, diff=np.asarray([0, 1, 0]))
normals = np.cross([dxdus, dydus, dzdus],
[dxdvs, dydvs, dzdvs],
axisa=0, axisb=0)
normals /= np.sqrt((normals ** 2).sum(axis=2))[:, :, np.newaxis]
arr = normals.transpose(2, 0, 1)
return arr
def point_distance(self, su, sv, sl, axis=0, interp_chunk_size=1000, return_coords=True, mesh=True):
"""Cumulative distance along an axis between arrays of (u, v, l) coordinates.
Parameters
----------
u, v, l : array-like
axis: axis along which the distance should be computed
mesh: calculate distances on a meshgrid, i.e. if axis=0, compute
u-coordinate distances for all values of v and l (default: True)
return_coords: if True, returns the coordinates for which distances were computed (default: True)
Returns
-------
If the lengths of u and v are at least 2, returns the cumulative length
between each u,v pair.
"""
u = np.array([su]).reshape(-1, )
v = np.array([sv]).reshape(-1, )
l = np.array([sl]).reshape(-1, )
assert (len(u) > 0)
assert (len(v) > 0)
assert (len(l) > 0)
if not mesh:
assert (len(u) == len(v))
assert (len(u) == len(l))
input_axes = [u, v, l]
c = input_axes
ordered_axes = [np.sort(c[i]) if i == axis else c[i] for i in range(0, 3)]
aidx = list(range(0, 3))
aidx.remove(axis)
distances = []
coords = []
npts = ordered_axes[axis].shape[0]
if npts > 1:
if mesh:
(eval_pts, eval_coords) = self.ev(*ordered_axes, chunk_size=interp_chunk_size, return_coords=True)
coord_idx = np.argsort(eval_coords[:, axis])
all_pts = (eval_pts.reshape(3, -1).T)[coord_idx, :]
all_pts_coords = eval_coords[coord_idx, :]
split_pts = np.split(all_pts, npts)
split_pts_coords = np.split(all_pts_coords, npts)
cdist = np.zeros((split_pts[0].shape[0], 1))
distances.append(cdist)
if return_coords:
cind = np.lexsort(tuple([split_pts_coords[0][i] for i in aidx]))
coords.append(split_pts_coords[0][cind])
for i in range(0, npts - 1):
a = split_pts[i + 1]
b = split_pts[i]
a_coords = split_pts_coords[i + 1]
b_coords = split_pts_coords[i]
aind = np.lexsort(tuple([a_coords[:, i] for i in aidx]))
bind = np.lexsort(tuple([b_coords[:, i] for i in aidx]))
a_sorted = a[aind]
b_sorted = b[bind]
dist = euclidean_distance(a_sorted, b_sorted).reshape(-1, 1)
cdist = cdist + dist
distances.append(cdist)
if return_coords:
coords.append(a_coords[aind])
else:
(eval_pts, eval_coords) = self.ev(*ordered_axes, chunk_size=interp_chunk_size, mesh=False,
return_coords=True)
coord_idx = np.argsort(eval_coords[:, axis])
all_pts = (eval_pts.reshape(3, -1).T)[coord_idx, :]
a = all_pts[1:, :]
b = all_pts[:-1, :]
a_coords = eval_coords[1:, :]
b_coords = eval_coords[:-1, :]
aind = np.lexsort(tuple([a_coords[:, i] for i in aidx]))
bind = np.lexsort(tuple([b_coords[:, i] for i in aidx]))
a_sorted = a[aind]
b_sorted = b[bind]
dist = euclidean_distance(a_sorted, b_sorted).reshape(-1, 1)
distances = np.cumsum(dist)
if return_coords:
coords = a_coords[aind]
if return_coords:
return distances, coords
else:
return distances
def boundary_distance(self, axis, b1, b2, coords, resolution=0.01):
"""Given U,V,L coordinates returns the distances of the points
to the U, V boundaries in the corresponding L layer.
Parameters
----------
- axis - axis along which to compute distance
- b1, b2 - boundary values
- coords - U,V,L coordinates
- resolution - discretization resolution in UVL space for distance calculation
Returns
-------
- dist1, dist2 - distances to the b1 and b2 boundaries
"""
## Distance from b1 boundary to coordinate
d1 = np.abs(b1 - coords[axis])
ps1 = np.linspace(b1, coords[axis], int(old_div(d1, resolution)))
if len(ps1) > 1:
p_grid1 = [ps1 if i == axis else coords[i] for i in range(0, 3)]
p_u, p_v, p_l = np.meshgrid(*p_grid1)
p_dist1 = self.point_distance(p_u.ravel(), p_v.ravel(), p_l.ravel(),
axis=axis, mesh=False, return_coords=False)[-1]
else:
p_dist1 = 0.
## Distance from coordinate to b2 boundary
d2 = np.abs(b2 - coords[axis])
ps2 = np.linspace(coords[axis], b2, int(old_div(d2, resolution)))
if len(ps2) > 1:
p_grid2 = [ps2 if i == axis else coords[i] for i in range(0, 3)]
p_u, p_v, p_l = np.meshgrid(*p_grid2)
p_dist2 = self.point_distance(p_u.ravel(), p_v.ravel(), p_l.ravel(),
axis=axis, mesh=False, return_coords=False)[-1]
else:
p_dist2 = 0.
return p_dist1, p_dist2
def point_position(self, su, sv, sl, resolution=0.01, return_extent=True):
"""Given U,V,L coordinates returns the positions of the points
relative to the U, V boundaries in the corresponding L layer.
Parameters
----------
u, v, l : array-like
Returns
-------
- pos - relative position along U, V axes
- extents - maximum extents along U and V for the given L
"""
u = np.array([su]).reshape(-1, )
v = np.array([sv]).reshape(-1, )
l = np.array([sl]).reshape(-1, )
assert (len(u) == len(v))
assert (len(u) == len(l))
uvl = np.array([u.ravel(), v.ravel(), l.ravel()]).T
npts = uvl.shape[0]
pos = []
extents = []
for i in range(0, npts):
u_dist1, u_dist2 = self.boundary_distance(0, self.u[0], self.u[-1], uvl[i, :], resolution=resolution)
u_extent = u_dist1 + u_dist2
u_pos = old_div(u_dist1, u_extent)
v_dist1, v_dist2 = self.boundary_distance(1, self.v[0], self.v[-1], uvl[i, :], resolution=resolution)
v_extent = v_dist1 + v_dist2
v_pos = old_div(v_dist1, v_extent)
pos.append((u_pos, v_pos))
extents.append((u_extent, v_extent))
if return_extent:
return (pos, extents)
else:
return pos
def mplot_surface(self, ures=8, vres=8, figax=False, **kwargs):
"""Plot the enclosing surfaces of the volume using Mayavi's `mesh()` function
Parameters
----------
ures, vres : int
Specifies the oversampling of the original
volume in u and v directions. For example:
if `ures` = 2, and `self.u` = [0, 1, 2, 3],
then the surface will be resampled at
[0, 0.5, 1, 1.5, 2, 2.5, 3] prior to
plotting.
kwargs : dict
See Mayavi docs for `mesh()`
Returns
-------
None
"""
from mayavi import mlab
from matplotlib.colors import ColorConverter
if not 'color' in kwargs:
# Generate random color
cvec = np.random.rand(3)
cvec /= math.sqrt(cvec.dot(cvec))
kwargs['color'] = tuple(cvec)
else:
# The following will convert text strings representing
# colors into their (r, g, b) equivalents (which is
# the only way Mayavi will accept them)
from matplotlib.colors import ColorConverter
cconv = ColorConverter()
if kwargs['color'] is not None:
kwargs['color'] = cconv.to_rgb(kwargs['color'])
# Make new u and v values of (possibly) higher resolution
# the original ones.
hru, hrv = self._resample_uv(ures, vres)
# Sample the surface at the new u, v values and plot
meshpts1 = self.ev(hru, hrv, np.max(self.l))
meshpts2 = self.ev(hru, hrv, np.min(self.l))
if figax is None:
m1 = mlab.mesh(*meshpts1, **kwargs)
m2 = mlab.mesh(*meshpts2, **kwargs)
# Turn off perspective
fig = mlab.gcf()
fig.scene.camera.trait_set(parallel_projection=1)
return fig
else:
fig, ax = figax
m1 = ax.plot_surface(*meshpts1, **kwargs)
m2 = ax.plot_surface(*meshpts2, **kwargs)
def mplot_volume(self, ures=8, vres=8, **kwargs):
"""Plot the volume using Mayavi's `scalar_scatter()` function
Parameters
----------
ures, vres : int
Specifies the oversampling of the original
volume in u and v directions. For example:
if `ures` = 2, and `self.u` = [0, 1, 2, 3],
then the surface will be resampled at
[0, 0.5, 1, 1.5, 2, 2.5, 3] prior to
plotting.
kwargs : dict
See Mayavi docs for `mesh()`
Returns
-------
None
"""
from mayavi import mlab
from matplotlib.colors import ColorConverter
if not 'color' in kwargs:
# Generate random color
cvec = np.random.rand(3)
cvec /= math.sqrt(cvec.dot(cvec))
kwargs['color'] = tuple(cvec)
else:
# The following will convert text strings representing
# colors into their (r, g, b) equivalents (which is
# the only way Mayavi will accept them)
from matplotlib.colors import ColorConverter
cconv = ColorConverter()
if kwargs['color'] is not None:
kwargs['color'] = cconv.to_rgb(kwargs['color'])
# Make new u and v values of (possibly) higher resolution
# the original ones.
hru, hrv = self._resample_uv(ures, vres)
volpts = self.ev(hru, hrv, self.l).reshape(3, -1)
s = np.ones_like(volpts[0,:])
sct = mlab.pipeline.scalar_scatter(volpts[0, :], volpts[1, :], volpts[2, :], s, **kwargs)
ug = mlab.pipeline.delaunay3d(sct)
mq = mlab.pipeline.user_defined(ug, filter='MeshQuality')
c2d = mlab.pipeline.cell_to_point_data(mq)
aa = mlab.pipeline.set_active_attribute(c2d)
vol = mlab.pipeline.surface(aa, **kwargs)
# Turn off perspective
fig = mlab.gcf()
fig.scene.camera.trait_set(parallel_projection=1)
return fig
def create_triangulation(self, ures=1, vres=1, lres=1, **kwargs):
"""Compute the triangulation of the volume using scipy's
`delaunay` function
Parameters
----------
ures, vres : int
Specifies the oversampling of the original
volume in u and v directions. For example:
if `ures` = 2, and `self.u` = [0, 1, 2, 3],
then the surface will be resampled at
[0, 0.5, 1, 1.5, 2, 2.5, 3] prior to
plotting.
kwargs : dict
See scipy docs for `scipy.spatial.Delaunay()`
Returns
-------
None
"""
from scipy.spatial import Delaunay
if self.tri is not None:
return self.tri
# Make new u and v values of (possibly) higher resolution
# the original ones.
hru, hrv, hrl = self._resample_uvl(ures, vres, lres)
N = 3
volpts = self.ev(hru, hrv, hrl).reshape(3, -1).T
qhull_options = 'QJ'
tri = Delaunay(volpts, qhull_options=qhull_options)
self.tri = tri
return tri
def plot_srf(self, ures=8, vres=8, **kwargs):
"""Alias for mplot_surface()
"""
self.mplot_surface(ures=ures, vres=vres, **kwargs)
def copy(self):
"""Get a copy of the volume
"""
from copy import deepcopy
return deepcopy(self)
def test_surface(u, v, l):
import numpy as np
x = np.array(-500. * np.cos(u) * (5.3 - np.sin(u) + (1. + 0.138 * l) * np.cos(v)))
y = np.array(750. * np.sin(u) * (5.5 - 2. * np.sin(u) + (0.9 + 0.114 * l) * np.cos(v)))
z = np.array(2500. * np.sin(u) + (663. + 114. * l) * np.sin(v - 0.13 * (np.pi - u)))
pts = np.array([x, y, z]).reshape(3, u.size)
xyz = pts.T
return xyz
def test_mplot_surface():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 20)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 20)
obs_l = np.linspace(-1.0, 1., num=3)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
from mayavi import mlab
vol.mplot_surface(color=(0, 1, 0), opacity=1.0, ures=10, vres=10)
mlab.show()
def test_mplot_volume():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 20)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 20)
obs_l = np.linspace(-1.0, 1., num=3)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
from mayavi import mlab
vol.mplot_volume(color=(0, 1, 0), opacity=1.0, ures=10, vres=10)
mlab.show()
def test_uv_isospline():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 20)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 20)
obs_l = np.linspace(-1.0, 1., num=3)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
U, V = vol._resample_uv(5, 5)
L = np.asarray([-1.0])
nupts = U.shape[0]
nvpts = V.shape[0]
from mayavi import mlab
U, V = vol._resample_uv(10, 10)
L = np.asarray([1.0])
nupts = U.shape[0]
nvpts = V.shape[0]
# Plot u,v-isosplines on the surface
upts = vol(U, V[0], L)
vpts = vol(U[int(old_div(nupts, 2))], V, L)
vol.mplot_surface(color=(0, 1, 0), opacity=1.0, ures=10, vres=10)
mlab.points3d(*upts, scale_factor=100.0, color=(1, 1, 0))
mlab.points3d(*vpts, scale_factor=100.0, color=(1, 1, 0))
mlab.show()
def test_point_distance_mesh():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 20)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, num=3)
obs_l = np.linspace(-1.0, 1., num=3)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
U, V = vol._resample_uv(5, 5)
L = np.asarray([1.0, 0.0, -1.0])
dist, coords = vol.point_distance(U, V[0], L, axis=0)
print(dist)
print(coords)
dist, coords = vol.point_distance(U[0], V, L, axis=1)
print(dist)
print(coords)
def test_point_distance():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 20)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 20)
obs_l = np.linspace(-1.0, 1., num=3)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
U, V = vol._resample_uv(5, 5)
L = np.asarray([1.0, 0.0, -1.0])
dist, coords = vol.point_distance(U, np.full((U.shape[0], 1), V[10]), np.full((U.shape[0], 1), L[1]), axis=0,
mesh=False)
print(dist)
print(coords)
dist, coords = vol.point_distance(np.full((V.shape[0], 1), U[10]), V, np.full((V.shape[0], 1), L[1]), axis=1,
mesh=False)
print(dist)
print(coords)
def test_point_position():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 20)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 20)
obs_l = np.linspace(-1.0, 1., num=3)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
U, V = vol._resample_uv(5, 5)
L = np.asarray([1.0, 0.0, -1.0])
print(vol.point_position(np.median(U), np.median(V), np.max(L)))
print(vol.point_position(1.0, np.median(V), np.max(L)))
def test_precision():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 25)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 25)
obs_l = np.linspace(-1.0, 1., num=10)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
test_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 250)
test_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 250)
test_l = np.linspace(-1.0, 1., num=10)
u, v, l = np.meshgrid(test_u, test_v, test_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size).T
interp_xyz = vol(u, v, l, mesh=False).reshape(3, u.size).T
error = xyz - interp_xyz
print(('Min error: %f' % np.min(error)))
print(('Max error: %f' % np.max(error)))
print(('Mean error: %f' % np.mean(error)))
def test_tri():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 30)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 30)
obs_l = np.linspace(-1.0, 1., num=5)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l).reshape(3, u.size)
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
tri = vol.create_triangulation()
return vol, tri
def test_load():
obs_u = np.linspace(-0.016 * np.pi, 1.01 * np.pi, 30)
obs_v = np.linspace(-0.23 * np.pi, 1.425 * np.pi, 30)
obs_l = np.linspace(-1.0, 1., num=5)
u, v, l = np.meshgrid(obs_u, obs_v, obs_l, indexing='ij')
xyz = test_surface(u, v, l)
vol = LinearVolume(obs_u, obs_v, obs_l, xyz)
vol.save('vol.p', 'phs3')
vol_from_file = LinearVolume.load('vol.p')
print((vol(0.5, 0.5, 0.5)))
print((vol_from_file(0.5, 0.5, 0.5)))
if __name__ == '__main__':
# test_precision()
# test_point_position()
# test_point_distance_mesh()
# test_point_distance()
# test_mplot_surface()
# test_mplot_volume()
# test_uv_isospline()
# test_tri()
test_load()