-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathtrain_evalute.py
213 lines (151 loc) · 7.47 KB
/
train_evalute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# coding=utf-8
import numpy as np
from tqdm import tqdm
import torch
from tensorboardX import SummaryWriter
import time
from Utils.utils import classifiction_metric
def train(epoch_num, n_gpu, model, train_dataloader, dev_dataloader,
optimizer, criterion, gradient_accumulation_steps, device, label_list,
output_model_file, output_config_file, log_dir, print_step, early_stop):
""" 模型训练过程
Args:
epoch_num: epoch 数量
n_gpu: 使用的 gpu 数量
train_dataloader: 训练数据的Dataloader
dev_dataloader: 测试数据的 Dataloader
optimizer: 优化器
criterion: 损失函数定义
gradient_accumulation_steps: 梯度积累
device: 设备,cuda, cpu
label_list: 分类的标签数组
output_model_file: 用于保存 Bert 模型
output_config_file: 用于 Bert 配置文件
log_dir: tensorboard 读取的日志目录,用于后续分析
print_step: 多少步保存一次模型,日志等信息
early_stop: 提前终止
"""
early_stop_times = 0
writer = SummaryWriter(
log_dir=log_dir + '/' + time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime(time.time())))
best_dev_loss = float('inf')
best_auc = 0
best_acc = 0
global_step = 0
for epoch in range(int(epoch_num)):
if early_stop_times >= early_stop:
break
print(f'---------------- Epoch: {epoch+1:02} ----------')
epoch_loss = 0
train_steps = 0
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
model.train()
batch = tuple(t.to(device) for t in batch)
_, input_ids, input_mask, segment_ids, label_ids = batch
logits = model(input_ids, segment_ids, input_mask, labels=None)
loss = criterion(logits.view(-1, len(label_list)), label_ids.view(-1))
""" 修正 loss """
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if gradient_accumulation_steps > 1:
loss = loss / gradient_accumulation_steps
train_steps += 1
loss.backward()
# 用于画图和分析的数据
epoch_loss += loss.item()
preds = logits.detach().cpu().numpy()
outputs = np.argmax(preds, axis=1)
all_preds = np.append(all_preds, outputs)
label_ids = label_ids.to('cpu').numpy()
all_labels = np.append(all_labels, label_ids)
if (step + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
global_step += 1
if global_step % print_step == 0 and global_step != 0:
""" 打印Train此时的信息 """
train_loss = epoch_loss / train_steps
train_acc, train_report, train_auc = classifiction_metric(all_preds, all_labels, label_list)
dev_loss, dev_acc, dev_report, dev_auc = evaluate(model, dev_dataloader, criterion, device, label_list)
c = global_step // print_step
writer.add_scalar("loss/train", train_loss, c)
writer.add_scalar("loss/dev", dev_loss, c)
writer.add_scalar("acc/train", train_acc, c)
writer.add_scalar("acc/dev", dev_acc, c)
writer.add_scalar("auc/train", train_auc, c)
writer.add_scalar("auc/dev", dev_auc, c)
for label in label_list:
writer.add_scalar(label + ":" + "f1/train", train_report[label]['f1-score'], c)
writer.add_scalar(label + ":" + "f1/dev",
dev_report[label]['f1-score'], c)
print_list = ['macro avg', 'weighted avg']
for label in print_list:
writer.add_scalar(label + ":" + "f1/train",
train_report[label]['f1-score'], c)
writer.add_scalar(label + ":" + "f1/dev",
dev_report[label]['f1-score'], c)
# # 以损失取优
# if dev_loss < best_dev_loss:
# best_dev_loss = dev_loss
# 以 acc 取优
if dev_acc > best_acc:
best_acc = dev_acc
# 以 auc 取优
# if dev_auc > best_auc:
# best_auc = dev_auc
model_to_save = model.module if hasattr(
model, 'module') else model
torch.save(model_to_save.state_dict(), output_model_file)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
early_stop_times = 0
else:
early_stop_times += 1
writer.close()
def evaluate(model, dataloader, criterion, device, label_list):
model.eval()
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
epoch_loss = 0
for _, input_ids, input_mask, segment_ids, label_ids in tqdm(dataloader, desc="Eval"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask, labels=None)
loss = criterion(logits.view(-1, len(label_list)), label_ids.view(-1))
preds = logits.detach().cpu().numpy()
outputs = np.argmax(preds, axis=1)
all_preds = np.append(all_preds, outputs)
label_ids = label_ids.to('cpu').numpy()
all_labels = np.append(all_labels, label_ids)
epoch_loss += loss.mean().item()
acc, report, auc = classifiction_metric(all_preds, all_labels, label_list)
return epoch_loss/len(dataloader), acc, report, auc
def evaluate_save(model, dataloader, criterion, device, label_list):
model.eval()
all_preds = np.array([], dtype=int)
all_labels = np.array([], dtype=int)
all_idxs = np.array([], dtype=int)
epoch_loss = 0
for idxs, input_ids, input_mask, segment_ids, label_ids in tqdm(dataloader, desc="Eval"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask, labels=None)
loss = criterion(logits.view(-1, len(label_list)), label_ids.view(-1))
preds = logits.detach().cpu().numpy()
outputs = np.argmax(preds, axis=1)
all_preds = np.append(all_preds, outputs)
label_ids = label_ids.to('cpu').numpy()
all_labels = np.append(all_labels, label_ids)
idxs = idxs.detach().cpu().numpy()
all_idxs = np.append(all_idxs, idxs)
epoch_loss += loss.mean().item()
acc, report, auc = classifiction_metric(all_preds, all_labels, label_list)
return epoch_loss/len(dataloader), acc, report, auc, all_idxs, all_labels, all_preds