-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
370 lines (316 loc) · 23.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Modified from StyleGAN3 codebase
"""Main file to start SCULPT training."""
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3, 4, 5, 6, 7"
import click
import re
import json
import tempfile
import torch
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
import legacy
import ipdb
#----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
#----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
#----------------------------------------------------------------------------
def init_dataset_kwargs(data):
try:
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
#----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--cfg', help='Base configuration', type=click.Choice(['stylegan3-t', 'stylegan3-r', 'stylegan2']), required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=str, required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--gamma', help='R1 regularization weight', metavar='FLOAT', type=click.FloatRange(min=0), required=True)
# Optional features.
@click.option('--cond', help='Train conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--mirror', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug', help='Augmentation mode', type=click.Choice(['noaug', 'ada', 'fixed']), default='ada', show_default=True)
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
@click.option('--freezed', help='Freeze first layers of D', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
# Misc hyperparameters.
@click.option('--p', help='Probability for --aug=fixed', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.2, show_default=True)
@click.option('--target', help='Target value for --aug=ada', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.6, show_default=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1))
@click.option('--cbase', help='Capacity multiplier', metavar='INT', type=click.IntRange(min=1), default=32768, show_default=True)
@click.option('--cmax', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--glr', help='G learning rate [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0))
@click.option('--dlr', help='D learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True)
@click.option('--map-depth', help='Mapping network depth [default: varies]', metavar='INT', type=click.IntRange(min=1))
@click.option('--mbstd-group', help='Minibatch std group size', metavar='INT', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--gen_grad_pen', help='gradient penalty for generator', metavar='BOOL', type=bool, default=False, show_default=False)
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=25000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.IntRange(min=1), default=4, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--fp32', help='Disable mixed-precision', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
# Renderer hyperparameters.
@click.option('--blur_radius', help='rastarizer blur radius', metavar='FLOAT', type=click.FloatRange(min=0), default=1e-5, show_default=True)
@click.option('--faces_per_pixel', help='number of faces rquired for interpolating a pixel', metavar='INT', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--azim', help='azimuthal angel of the camera location in degree', metavar='FLOAT', type=click.FloatRange(min=0), default=0.0, show_default=True)
@click.option('--elev', help='elevation angel of the camera location in degree', metavar='FLOAT', type=click.FloatRange(min=0), default=0.0, show_default=True)
@click.option('--only_disp_img', help='If Turned on only displacement image is generated', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--resume_pretrain_cape', help='If Turned on only displacement image is generated', metavar='BOOL', type=bool, default=False, show_default=True)
# SMPL mesh hyperparameters.
@click.option('--smpl_uv_mask_path', help='SMPL_uv_mask_path', metavar='NPY', type=click.Path(exists=True), default='./data/smpl_uv_mask_256.npy', show_default=True)
@click.option('--smpl_faces_path', help='SMPL_faces_path', metavar='NPY', type=click.Path(exists=True), default='./data/smpl_faces.npy', show_default=True)
@click.option('--smpl_model_path', help='SMPL models path', metavar='PKL', type=click.Path(exists=True), default='./data/SMPL_NEUTRAL.pkl', show_default=True)
@click.option('--img2mesh_map_path', help='unique_v2p_mapper_path', metavar='PKL', type=click.Path(exists=True), default='./data/vertex2pixel_256.npy', show_default=True)
@click.option('--cano_shape', help='Load v_shaped instead of betas', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--mask_disp_map', help='mask the generated displacement maps', metavar='BOOL', type=bool, default=False, show_default=False)
@click.option('--disp_activatn_type', help='Activation type after displacement layer', type=click.Choice(['sigmoid', 'tanh']), default='tanh', show_default=True)
@click.option('--disp_scale', help='Scaling factor for the displacements after activation', metavar='FLOAT', type=click.FloatRange(max=1.0), default=0.1, show_default=True)
@click.option('--seperate_disp_map', help='Generate 10x3 channel disp maps for different parts', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--sep_disp_map_sampling', help='Generate 10x3 channel disp maps for different parts', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--spiral_conv', help='Perform spiral convolution at the end on the posed mesh', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--texture_render', help='Perform spiral convolution at the end on the posed mesh', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--geometry', help='Load geometry network pickle', metavar='[PATH|URL]', type=str)
@click.option('--smpl_uv_coords_path', help='SMPL_UV_coords_path', metavar='NPY', type=click.Path(exists=True), default='./data/smpl_uv_obj_vertextextureUVcoords.npy', show_default=True)
@click.option('--smpl_uv_coords_faces_path', help='SMPL_UV_coords_faces_path', metavar='NPY', type=click.Path(exists=True), default='./data/smpl_uv_obj_vertextextureUVcoords_faces.npy', show_default=True)
# Weights for mesh smoothness
@click.option('--edge_loss', help='weight of the edge loss on the mesh', metavar='FLOAT', type=click.FloatRange(min=0), default=1.0, show_default=True)
@click.option('--normal_loss', help='weight of the normal consistency loss on the mesh', metavar='FLOAT', type=click.FloatRange(min=0), default=0.01, show_default=True)
@click.option('--laplacian_loss', help='weight of the laplacian loss on the mesh', metavar='FLOAT', type=click.FloatRange(min=0), default=0.01, show_default=True)
@click.option('--mesh_smooth_w', help='weight of the laplacian loss on the mesh', metavar='FLOAT', type=click.FloatRange(min=0), default=1.0, show_default=True)
# Conditioning on pose
@click.option('--pose_cond', help='Turn on conditioning on pose', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--pose_cond_type', help='Pose conditioning type mode', type=click.Choice(['axisangle', '6Drot', 'vposer']), default='axisangle', show_default=True)
@click.option('--clothtype_cond', help='Turn on conditioning on clothing type', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--conformnet', help='Turn on to condition the texture network with geometry', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--conditional_d', help='Turn on to condition the discriminator network with normals', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--guass_blur_normals', help='Turn on gaussian bluring on the normal images', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--patch_d', help='Turn on patch based discriminator on images', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--colorcond', help='Turn on conditioning on crude color labels', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--patch_d_with_glob', help='Turn on patch based discriminator with global discrim', metavar='BOOL', type=bool, default=False, show_default=True)
def main(**kwargs):
""" Check trainer_cluster_mul.sh file for starting the training process.
There are more arguments than actually required for the SCULPT project because
this was planned to a part of a broder project. One do not need to use all the
arguments or check carefully before using it."""
# Initialize config.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name=None, z_dim=512, w_dim=512, mapping_kwargs=dnnlib.EasyDict(), render_kwargs=dnnlib.EasyDict())
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks_stylegan2.Discriminator', block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict())
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data)
if opts.cond and not c.training_set_kwargs.use_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
c.training_set_kwargs.use_labels = opts.cond
c.training_set_kwargs.xflip = opts.mirror
c.training_set_kwargs.pose_cond = opts.pose_cond
c.training_set_kwargs.pose_cond_type = opts.pose_cond_type
c.training_set_kwargs.clothtype_cond = opts.clothtype_cond
c.training_set_kwargs.conditional_D = opts.conditional_d
c.training_set_kwargs.colorcond = opts.colorcond
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus
c.G_kwargs.channel_base = c.D_kwargs.channel_base = opts.cbase
c.G_kwargs.channel_max = c.D_kwargs.channel_max = opts.cmax
c.G_kwargs.disp_activatn_type = opts.disp_activatn_type
c.G_kwargs.disp_scale = opts.disp_scale
c.G_kwargs.only_disp_img = opts.only_disp_img
c.G_kwargs.conformnet = opts.conformnet
c.G_kwargs.resume_pretrain_cape = opts.resume_pretrain_cape
c.G_kwargs.mapping_kwargs.num_layers = (8 if opts.cfg == 'stylegan2' else 2) if opts.map_depth is None else opts.map_depth
c.D_kwargs.block_kwargs.freeze_layers = opts.freezed
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group
c.D_kwargs.patch_d = opts.patch_d
# c.D_kwargs.patch_d_with_glob = opts.patch_d_with_glob
# c.D_kwargs.ndf = 64
# c.D_kwargs.n_layers_patchdiscrim = 3
# c.D_kwargs.norm_layer_patchdiscrim = 'BatchNorm2d'
c.loss_kwargs.r1_gamma = opts.gamma
c.loss_kwargs.edge_loss = opts.edge_loss
c.loss_kwargs.normal_loss = opts.normal_loss
c.loss_kwargs.laplacian_loss = opts.laplacian_loss
c.loss_kwargs.mesh_smooth_w = opts.mesh_smooth_w
c.loss_kwargs.gen_grad_pen = opts.gen_grad_pen
c.G_opt_kwargs.lr = (0.002 if opts.cfg == 'stylegan2' else 0.0025) if opts.glr is None else opts.glr
c.D_opt_kwargs.lr = opts.dlr
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# c.G_reg_interval = 5
c.G_kwargs.render_kwargs.blur_radius = opts.blur_radius
c.G_kwargs.render_kwargs.faces_per_pixel = opts.faces_per_pixel
c.G_kwargs.render_kwargs.azim = opts.azim
c.G_kwargs.render_kwargs.elev = opts.elev
c.G_kwargs.render_kwargs.SMPL_faces_path = opts.smpl_faces_path
c.G_kwargs.render_kwargs.SMPL_uv_mask_path = opts.smpl_uv_mask_path
c.G_kwargs.render_kwargs.smpl_model_path = opts.smpl_model_path
c.G_kwargs.render_kwargs.cano_shape = opts.cano_shape
c.G_kwargs.render_kwargs.unique_v2p_mapper_path = opts.img2mesh_map_path
c.G_kwargs.mask_disp_map = opts.mask_disp_map
c.G_kwargs.seperate_disp_map = opts.seperate_disp_map
c.G_kwargs.sep_disp_map_sampling = opts.sep_disp_map_sampling
c.G_kwargs.spiral_conv = opts.spiral_conv
c.G_kwargs.texture_render = opts.texture_render
c.G_kwargs.guass_blur_normals = opts.guass_blur_normals
if opts.texture_render:
c.G_kwargs.render_kwargs.SMPL_UV_coords_path = opts.smpl_uv_coords_path
c.G_kwargs.render_kwargs.SMPL_UV_coords_faces_path = opts.smpl_uv_coords_faces_path
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size:
raise click.ClickException('--batch-gpu cannot be smaller than --mbstd')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
# Base configuration.
c.ema_kimg = c.batch_size * 10 / 32
if opts.cfg == 'stylegan2':
c.G_kwargs.class_name = 'training.networks_stylegan2.Generator'
c.loss_kwargs.style_mixing_prob = 0.9 # Enable style mixing regularization.
c.loss_kwargs.pl_weight = 2 # Enable path length regularization.
c.G_reg_interval = 4 # Enable lazy regularization for G.
c.G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions.
c.loss_kwargs.pl_no_weight_grad = True # Speed up path length regularization by skipping gradient computation wrt. conv2d weights.
else:
c.G_kwargs.class_name = 'training.networks_stylegan3.Generator'
c.G_kwargs.magnitude_ema_beta = 0.5 ** (c.batch_size / (20 * 1e3))
if opts.cfg == 'stylegan3-r':
c.G_kwargs.conv_kernel = 1 # Use 1x1 convolutions.
c.G_kwargs.channel_base *= 2 # Double the number of feature maps.
c.G_kwargs.channel_max *= 2
c.G_kwargs.use_radial_filters = True # Use radially symmetric downsampling filters.
c.loss_kwargs.blur_init_sigma = 10 # Blur the images seen by the discriminator.
c.loss_kwargs.blur_fade_kimg = c.batch_size * 200 / 32 # Fade out the blur during the first N kimg.
# Augmentation.
if opts.aug != 'noaug':
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1)
if opts.aug == 'ada':
c.ada_target = opts.target
if opts.aug == 'fixed':
c.augment_p = opts.p
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
c.ada_kimg = 100 # Make ADA react faster at the beginning.
c.ema_rampup = None # Disable EMA rampup.
c.loss_kwargs.blur_init_sigma = 0 # Disable blur rampup.
# if not opts.resume_pretrain_cape:
# c.ada_kimg = 100 # Make ADA react faster at the beginning.
# c.ema_rampup = None # Disable EMA rampup.
# c.loss_kwargs.blur_init_sigma = 0 # Disable blur rampup.
if opts.geometry is not None:
c.geometry_pkl = opts.geometry
# with dnnlib.util.open_url(c.geometry_pkl) as f:
# c.G_geometry = legacy.load_network_pkl(f)['G_ema']
# Performance-related toggles.
if opts.fp32:
c.G_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0
c.G_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{opts.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}-{opts.aug:s}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
#----------------------------------------------------------------------------
if __name__ == "__main__":
# with torch.autograd.detect_anomaly(): # Uncomment this line and comment the last main line while debugging in GPU clusters
# main() # pylint: disable=no-value-for-parameter
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------